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Lecture Notes 

Week 10 
 

Frequency Domain Analysis (1-D) 
[For 2-D cases, watch the third video of Week 10] 

 
Discrete Fourier Transform 
 
Given a discrete finite time series y=[y1,y2,y3,…,yN] at uniformly sampled time points 
t=[t1,t2,t3,…,tN], y can be expressed as a summation series of N sinusoidal waves: 
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where Y=[Y1,Y2,Y3,…,YN] (complex) are the Discrete Fourier Transform (DFT) at 

frequencies f=[f1,f2,f3,…,fN], where 1
k
kf
N t
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. Mathematically, Yk is obtained by 
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2

kY  are estimates of spectral powers at frequencies fk. Conversely, y is the inverse Discrete 
Fourier Transform of Y.  
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For real data y, half of Y are redundant: 2N k kY Y ∗
− + =  (see Appendix). 

 

1.  1
k
kf
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Δ

 is physically meaningful only for 1, , 1
2
Nk = + . Other frequencies 

are negative frequencies and are equivalent to the positive frequencies. 
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 is the highest frequency that DFT can “see”; called Nyquist frequency. 

3. Nyquist frequency due to aliasing: Oscillations with frequencies higher than 1
2 tΔ

 

cannot be distinguished from oscillations with frequencies lower than 1
2 tΔ

. 
 
 
Nyquist Theorem: 
 

 

 

 
Only Case B (sampling twice over each cycle) correctly measures the signal. 

 
  



Fast Fourier Transfrom 
 
Eqs (1) and (2) are too slow to calculate: order of complexity = O(N2). J. W. Cooley and J. W. 
Tukey simplified the algorithm and called it Fast Fourier Transform (FFT), which works best if 

2 pN =  and the order of complexity is O(NlnN). 
 
Matlab: Y=fft(y) and y=ifft(Y). 

abs(Y).^2 are spectral powers. 
 

If 2 pN ≠ , pad zeros: 
 

Y    = fft(y, 2.^nextpow2(length(y)) ); 
ynew = ifft(Y); 
y    = ynew(1:length(y)); 

 
Appendix 
For real y , 
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Therefore, *
2k N kY Y − += . 


