
University of Washington
AMATH 301 Spring 2017

Instructor: Dr. King-Fai Li

Week 2

Solving Systems of Linear Equations

Given a set of equations,

1 2

1 2

2

2 5 7

x x

x x

  
  

First check the determinant: (1)(-5) – (-1)(2) = -3

The following is what you did in high school

1 2

1 2

2

2 5 7

x x

x x

  
  

 1 2

2

2

3 3

x x

x

  
  

1

2

1

1

x

x

 


Matrix Form:

1

2

1 1 2

2 5 7

x

x

     
         

  1

2

1 1 2

0 3 3

x

x

     
         

 1

2

1 0 1

0 1 1

x

x

    
    

    
Ax b Ux b x b

U is an upper triangular matrix.

Definition: \x A b denotes the solution of x obtained using Gaussian Elimination

Importance: Mathematically 1\ A b A b , but computationally we do not need 1A when
calculating \A b . So \A b is more efficient.

In Matlab, \A b is executed by A\b and 1A b is executed by inv(A)*b

Gaussian
Elimination

Back
substitution

LU decomposition

Purpose: Given a square n×n matrix A, decompose A into a product of two square matrices:

A LU , where L is lower triangular and U is upper triangular.

U is obtained using Gaussian Elimination. But how to get L? L is to record how we make a zero
in A. First write

1 0

0 1
L

 
  
 

Consider this intermediate step:

1 1 2

2 5 7

x

y

     
         

 
1 1 2

0 3 3

x

y

     
         

We have multiplied 2 to the first row to use it to subtract the second row, resulting a zero in the
(2,1)-th element. So put 2 into the same location where A is made zero:

2

1 0

1

 
  
 

L

Check:

1 0 1 1 1 1

2 1 0 3 2 5

     
           

LU A

Then

Ax b    LU x b  \Ux L b   \ \x U L b

Here

A LU manifests Gaussian Elimination ~ 32

3
O n 
 
 

 float-point operations (flops)

\L b manifests forward substitution ~  2O n flops

\U b manifests back substitution ~  2O n flops

Pivoting and Permutation

There is situation where A LU cannot be done. Consider

2

1 2

1

2 5 7

x

x x


  

, or equivalently, 1

2

0 1 1

2 5 7

x

x

    
         

This system cannot be made upper triangular by Gaussian Elimination. But one can swap the order
of the rows of A by applying a permutation matrix

0 1

1 0

 
  
 

P

so that

0 1 0 1 2 5

1 0 2 5 0 1

               
A PA

And A is LU-decomposable (although not necessary in this example). In Matlab, when A\b is
executed, the rows of A are first rearranged by a permutation matrix P to avoid zero pivots. Then
P*A is decomposed into L and U. Finally, x is obtained by U\(L\P*b).

Ax b    PA x Pb    LU x Pb   \Ux L Pb    \ \x U L Pb

Matlab commands

[L,U,P]=lu(A) such that P*A=L*U

To obtain A\b,  32.67O n flops are taken. To obtain inv(A)*b,  35.67O n flops are taken.

So always use A\b.

Given any matrices, check
 det(A): If 16det() 10A , unique solution of x exists.

But does not mean accurate. Check

 cond(A): Fractional error  cond A
  

x

x
, where 1610  is the machine precision.

A\b or inv(A)*b?

