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Week 2 

Solving Systems of Linear Equations 

Given a set of equations,  
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First check the determinant: (1)(-5) – (-1)(2) = -3 

The following is what you did in high school 
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Matrix Form: 
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U  is an upper triangular matrix. 

Definition: \x A b  denotes the solution of x obtained using Gaussian Elimination  

Importance: Mathematically 1\ A b A b , but computationally we do not need 1A  when 
calculating \A b . So \A b  is more efficient. 

In Matlab, \A b  is executed by  A\b and 1A b  is executed by inv(A)*b 
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LU decomposition 
 
Purpose: Given a square n×n matrix A, decompose A into a product of two square matrices:

A LU , where L is lower triangular and U is upper triangular. 
 
U is obtained using Gaussian Elimination. But how to get L? L is to record how we make a zero 
in A. First write 
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Consider this intermediate step: 
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We have multiplied 2 to the first row to use it to subtract the second row, resulting a zero in the 
(2,1)-th element. So put 2 into the same location where A is made zero: 
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Check: 
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Then 
 

Ax b         LU x b      \Ux L b       \ \x U L b  

 
Here 

A LU  manifests Gaussian Elimination ~ 32

3
O n 
 
 

 float-point operations (flops) 

\L b  manifests forward substitution ~  2O n  flops 

\U b  manifests back substitution ~  2O n  flops 

 
  



Pivoting and Permutation  
 
There is situation where A LU  cannot be done. Consider 
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This system cannot be made upper triangular by Gaussian Elimination. But one can swap the order 
of the rows of A by applying a permutation matrix 
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so that 
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And A  is LU-decomposable (although not necessary in this example). In Matlab, when A\b is 
executed, the rows of A are first rearranged by a permutation matrix P to avoid zero pivots. Then 
P*A is decomposed into L and U. Finally, x is obtained by U\(L\P*b). 
 

Ax b        PA x Pb        LU x Pb     \Ux L Pb        \ \x U L Pb  

 
 
Matlab commands 
 
[L,U,P]=lu(A) such that P*A=L*U 
 

 
 
To obtain A\b,  32.67O n  flops are taken. To obtain inv(A)*b,  35.67O n  flops are taken. 

So always use A\b. 
 
Given any matrices, check 
   det(A): If 16det( ) 10A , unique solution of x exists. 

 
But does not mean accurate. Check 

        cond(A): Fractional error  cond A
  

x

x
, where 1610   is the machine precision. 

A\b or inv(A)*b? 


