University of Washington AMATH 301 Spring 2017

Instructor: Dr. King-Fai Li

Week 2

Solving Systems of Linear Equations

Given a set of equations,

$$x_1 - x_2 = -2$$
$$2x_1 - 5x_2 = -7$$

First check the determinant: (1)(-5) - (-1)(2) = -3

The following is what you did in high school

$$x_1 - x_2 = -2$$

$$2x_1 - 5x_2 = -7$$
Gaussian
$$x_1 - x_2 = -2$$

$$-3x_2 = -3$$
Back
substitution
$$x_1 = -1$$

$$x_2 = 1$$

Matrix Form:

$$\begin{pmatrix} 1 & -1 \\ 2 & -5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -2 \\ -7 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & -1 \\ 0 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -2 \\ -3 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

$$\mathbf{b}'$$

$$\mathbf{b}'$$

U is an upper triangular matrix.

Definition: $\mathbf{x} = \mathbf{A} \setminus \mathbf{b}$ denotes the solution of \mathbf{x} obtained using Gaussian Elimination

Importance: Mathematically $\mathbf{A} \setminus \mathbf{b} = \mathbf{A}^{-1}\mathbf{b}$, but computationally we do not need \mathbf{A}^{-1} when calculating $\mathbf{A} \setminus \mathbf{b}$. So $\mathbf{A} \setminus \mathbf{b}$ is more efficient.

In Matlab, $\mathbf{A} \setminus \mathbf{b}$ is executed by $\mathbf{A} \setminus \mathbf{b}$ and $\mathbf{A}^{-1}\mathbf{b}$ is executed by $\mathtt{inv}(\mathbf{A}) \star \mathbf{b}$

LU decomposition

Purpose: Given a square $n \times n$ matrix **A**, decompose **A** into a product of two square matrices: $\mathbf{A} = \mathbf{L}\mathbf{U}$, where **L** is lower triangular and **U** is upper triangular.

U is obtained using Gaussian Elimination. But how to get L? L is to record how we make a zero in A. First write

$$L = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Consider this intermediate step:

$$\begin{pmatrix} 1 & -1 \\ 2 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2 \\ -7 \end{pmatrix} \implies \begin{pmatrix} 1 & -1 \\ 0 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2 \\ -3 \end{pmatrix}$$

We have multiplied 2 to the first row to use it to subtract the second row, resulting a zero in the (2,1)-th element. So put 2 into the same location where \mathbf{A} is made zero:

$$\mathbf{L} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$

Check:

$$\mathbf{L}\mathbf{U} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & -3 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 2 & -5 \end{pmatrix} = \mathbf{A}$$

Then

$$Ax = b \quad \Rightarrow \quad \left(LU\right)x = b \quad \Rightarrow \quad Ux = L\setminus b \quad \Rightarrow \quad x = U\setminus \left(L\setminus b\right)$$

Here

A = **LU** manifests Gaussian Elimination $\sim O\left(\frac{2}{3}n^3\right)$ float-point operations (flops)

 $\mathbf{L} \setminus \mathbf{b}$ manifests forward substitution $\sim O(n^2)$ flops

 $\mathbf{U} \setminus \mathbf{b}$ manifests back substitution $\sim O(n^2)$ flops

Pivoting and Permutation

There is situation where A = LU cannot be done. Consider

$$x_2 = 1$$

 $2x_1 - 5x_2 = -7$, or equivalently, $\begin{pmatrix} 0 & 1 \\ 2 & -5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ -7 \end{pmatrix}$

This system cannot be made upper triangular by Gaussian Elimination. But one can swap the order of the rows of A by applying a permutation matrix

$$\mathbf{P} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

so that

$$\mathbf{A'} = \mathbf{P}\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 2 & -5 \end{pmatrix} = \begin{pmatrix} 2 & -5 \\ 0 & 1 \end{pmatrix}$$

And A' is LU-decomposable (although not necessary in this example). In Matlab, when $A \setminus b$ is executed, the rows of A are first rearranged by a permutation matrix P to avoid zero pivots. Then P*A is decomposed into L and U. Finally, x is obtained by $U \setminus (L \setminus P*b)$.

$$Ax = b \implies (PA)x = Pb \implies (LU)x = Pb \implies Ux = L \setminus (Pb) \implies x = U \setminus (L \setminus (Pb))$$

Matlab commands

[L,U,P]=lu(A) such that P*A=L*U

$$A\b$$
 or $inv(A)*b$?

To obtain $A \ b$, $O(2.67n^3)$ flops are taken. To obtain inv(A) *b, $O(5.67n^3)$ flops are taken. So always use $A \ b$.

Given any matrices, check

$$\det(\mathbf{A})$$
: If $|\det(\mathbf{A})| >> 10^{-16}$, unique solution of \mathbf{x} exists.

But does not mean accurate. Check

cond(A): Fractional error
$$\frac{\delta \mathbf{x}}{\mathbf{x}} = cond(A) \times \varepsilon$$
, where $\varepsilon = 10^{-16}$ is the machine precision.