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1. Fixed-point iteration 
 
Purpose: Find the roots of   0F x  

1. Rewrite   0F x  into the form of  Gx x . i.e. if x  is a solution, so will be  G x . 

2. Make an initial guess of x , call it  0x . 

a. For linear problems, if convergence is assured, any  0x  will do. Try  0 x 0 . 

3. For self-consistency,   0G x  should be close to the root. So take     1 0Gx x . 

4. Iterate     2 1Gx x ,     3 2Gx x , … until 
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Fixed-point iteration is applicable to linear and non-linear equations. For our purposes, we only 
consider linear systems  F  x Ax b . Two forms of  G x  are considered below. 

 
 
 
2. Jacobi’s Method 

Purpose: Solve 
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A x b  for x using iterative methods. 

 
Decompose A into three components: 
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D is the diagonal part of A, L  is the strictly lower triangular part and U  is the strictly upper 

triangular part. 
 



Jacobi’s method keeps only the diagonal part on the left hand side: 
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Thus the iteration equation is 
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Physical Meaning: All new estimates  1n

jx   are based on old estimates  n
k jx  . 

 
In the video, Prof. Brunton defined   T L U . 

 
In Matlab, 
 
x = zeros(m,1); 
iter = 0; 
eps = 1e-4; 
while iter <= 100   % To avoid infinite loops 
  xold = x; 
  iter = iter + 1; 
  x = D\(b-(Ls+Us)*xold); 
  if norm(x-xold,inf)<eps 
    break 
  end 
end 
 
3. Gauss-Seidel Method 
 
Gauss-Seidel method keeps the diagonal and the strictly lower triangular parts on the left hand 
side: 
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Physical Meaning: New estimates  1n

jx   are progressively used whenever they are available. 

 
In the video, Prof. Brunton defined  S L D . 

 
In Matlab,  



 
x = zeros(m,1); 
iter = 0; 
eps = 1e-4; 
while iter <= 100   % To avoid infinite loops 
  xold = x; 
  iter = iter + 1; 
  x = (Ls+D)\(b-Us*xold); 
  if norm(x-xold,inf)<eps 
    break 
  end 
end 
 
4. Theory of convergence 
 
One must check the convergence of the above methods before proceeding. 
 
A sufficient (but not necessary) convergence condition for Jacobi’s method: 
 
Strictly diagonally dominance: The sum of absolute values of row-wise off-diagonal elements is 
less than the diagonal element of the same row: ij ii

j i

a a


 . 

However, this condition is not necessary. i.e. There can be cases where A is not strictly diagonally 
dominant but the Jacobi method still converges. 
 
e.g. From Prof. Kutz’s book 
 

 
 
is not strictly diagonally dominant. But swapping the first and third equations will do: 
 

 
 
In this case, the Jacobi method is guaranteed to be convergent.  
 
 
 
 
 
 



General theory of convergence: 
 
The above two iterative methods can be recast as 
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Therefore, we need lim 0n
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M  for convergence. 
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Thus if max 1  , then the iteration converges. 

 
For Jacobi’s Method,  \    M D L U   

For Gauss-Seidel Method,   \   M L D U  

 
 
5. Conjugate Gradient Method (Optional) 
 

Given a symmetric A, minimize   1

2
T Tf  x x Ax x b  with respect to x such that at the minimum, 

  0f    x Ax b . Therefore x is the solution of Ax b  at the minimum point. 

 
In Matlab, bicg uses a similar algorithm solve for x  with non-symmetric A. 


