
University of Washington
AMATH 301 Spring 2017

Instructor: Dr. King-Fai Li

Week 3

1. Fixed-point iteration

Purpose: Find the roots of   0F x

1. Rewrite   0F x into the form of  Gx x . i.e. if x is a solution, so will be  G x .

2. Make an initial guess of x , call it  0x .

a. For linear problems, if convergence is assured, any  0x will do. Try  0 x 0 .

3. For self-consistency,   0G x should be close to the root. So take     1 0Gx x .

4. Iterate     2 1Gx x ,     3 2Gx x , … until

        
    

1 1max maxn n n n
k k

k
x x     x x

n+1 nnorm x -x ,inf


Fixed-point iteration is applicable to linear and non-linear equations. For our purposes, we only
consider linear systems  F  x Ax b . Two forms of  G x are considered below.

2. Jacobi’s Method

Purpose: Solve

m m

G G G G G



     
          
          

A x b for x using iterative methods.

Decompose A into three components:

 


  


 


*

*

G G G G G

 

   
         
      

U

A D L D U

L diag diag Atril A-D triu A-D

D is the diagonal part of A, L is the strictly lower triangular part and U is the strictly upper

triangular part.

Jacobi’s method keeps only the diagonal part on the left hand side:

 
 \

 

 

  

    

Dx b L U x

x D b L U x

Thus the iteration equation is

     1 \n n
 

    x D b L U x

Physical Meaning: All new estimates  1n

jx  are based on old estimates  n
k jx  .

In the video, Prof. Brunton defined   T L U .

In Matlab,

x = zeros(m,1);
iter = 0;
eps = 1e-4;
while iter <= 100 % To avoid infinite loops
 xold = x;
 iter = iter + 1;
 x = D\(b-(Ls+Us)*xold);
 if norm(x-xold,inf)<eps
 break
 end
end

3. Gauss-Seidel Method

Gauss-Seidel method keeps the diagonal and the strictly lower triangular parts on the left hand
side:

 
     1 \n n

 


 

  

    

L D x b U x

x L D b U x

Physical Meaning: New estimates  1n

jx  are progressively used whenever they are available.

In the video, Prof. Brunton defined  S L D .

In Matlab,

x = zeros(m,1);
iter = 0;
eps = 1e-4;
while iter <= 100 % To avoid infinite loops
 xold = x;
 iter = iter + 1;
 x = (Ls+D)\(b-Us*xold);
 if norm(x-xold,inf)<eps
 break
 end
end

4. Theory of convergence

One must check the convergence of the above methods before proceeding.

A sufficient (but not necessary) convergence condition for Jacobi’s method:

Strictly diagonally dominance: The sum of absolute values of row-wise off-diagonal elements is
less than the diagonal element of the same row: ij ii

j i

a a


 .

However, this condition is not necessary. i.e. There can be cases where A is not strictly diagonally
dominant but the Jacobi method still converges.

e.g. From Prof. Kutz’s book

is not strictly diagonally dominant. But swapping the first and third equations will do:

In this case, the Jacobi method is guaranteed to be convergent.

General theory of convergence:

The above two iterative methods can be recast as

        
1

1 2 0

0

n
n n n n k

k


 



          
 
x Mx c M Mx c c M x M c

Therefore, we need lim 0n

n
M for convergence.

Since
   

1

,

n n

eig






V S M

M VS V , where

1

2

m






 
 
 
 
 
 

S


 is a diagonal matrix containing the

eigenvalues and 1 2

| | |

| | |
m

 
   
 
 

V v v v has the eigenvectors as columns,

 1 1 max
n

n n n n
k

k
    M VS V V S V S

Thus if max 1  , then the iteration converges.

For Jacobi’s Method,  \    M D L U

For Gauss-Seidel Method,   \   M L D U

5. Conjugate Gradient Method (Optional)

Given a symmetric A, minimize   1

2
T Tf  x x Ax x b with respect to x such that at the minimum,

  0f    x Ax b . Therefore x is the solution of Ax b at the minimum point.

In Matlab, bicg uses a similar algorithm solve for x with non-symmetric A.

