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Solving coupled ODEs in Matlab 

For coupled equations: 
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with  1 0.4 1Y t    ,  2 0.4 0Y t   .

 
 

F=@(t,Y)[Y(1)-Y(2)+2 ;  -Y(1)+Y(2)+4*t]; 

t1 = 0.4; 

tmax = 2; 

[tout,Yout]=ode45(F,[t1  tmax],[-1  0]); 

Y1out = Yout(:,1); 

Y2out = Yout(:,2); 

 

Stability of ODEs — Concept of Stiffness 
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Example 1: Euler’s method 
 
Consider the Euler’s method with a mesh size h. Then the error grows as 
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Therefore, the error will exponentially grow to   unless 1 1h  . For the Euler’s method to 

work, thus we require 
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  1Q h h    is called the stability function for the Euler’s method and it defines the stiffness 

of the ODE.  
 
A small step size h, and hence a lot more computations, is required for stiff equations. 
 
Example 2: Implicit Euler method 
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Therefore, as long as 0  , the implicit Euler method is always stable or “stiff”. In general 
implicit methods are stiff. 
 
Stiff solvers in Matlab: 

ode15s, ode23s, ode23t, ode23tb, ode15i 

 

Implicit Trapezoidal Rule (similar but not identical to ode23tb)
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Global errors ~ O(h2). 
 
Use fzero or fsolve to solve for y2. 

 
  



Flame Model (From Mathworks.com) 
 
The flame size of a match before and after scratching the matchbox can be described by 
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In the following demonstration, ode45 will march slowly in time after the flame is set up after 

1

1
t

y
  because of the stiffness; zooming in to the solution right after 
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unexpected oscillations. ode23tb, on the other hand, produces a smooth solution after 
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and is much faster to run at an expense of a less accurate solution. 
 
% Demonstration of a stiff system 
% AMATH301, 2015 Winter Term, U Washington 
% Instructor: Dr. King-Fai Li 
 
clear all; close all; clc; 
% Flame model described in Mathworks.com 
F = @(t,y) y.^2 - y.^3 ; 
Y1 = 0.0001; 
 
% Analytic solution 
t = linspace(0,2/y1,1000); 
a = 1/y1 - 1; 
plot(t,1./(1+lambertw(a*exp(a-t))),'-r','LineWidth',1.2); 
axis([t(1) t(end) 0 1.2]) 
hold on 
 
% Plot as ODE45 calculates 
ode45(F,[0 2/y1],y1); 
 
figure(2) 
plot(t,1./(1+lambertw(a*exp(a-t))),'-r','LineWidth',1.2); 
axis([t(1) t(end) 0 1.2]) 
hold on 
 
% Plot as ODE23tb calculates 
ode23tb(F,[0 2/y1],y1); 
 

  



Solution from ode45 

 

Solution from ode23tb 

  

  



 
Stability of Coupled ODE System 
 
An example with 2 variables: 
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J  is the Jacobian. 

 

For the Euler’s method,  1 1

n

n h  ε I J ε . 
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Therefore the Euler’s method is stable if all   satisfies 1 1h  . 

 
  



Chaotic Systems 
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The system is deterministic, but has little predictive power. 

1. Deterministic: Given an initial condition, the system has only a unique evolution path. 
2. Loss of predictive power: Given a tiny different initial condition, the system has a 

completely different evolution path. The difference grows exponentially. 

#2 persists even if you have a perfect computer with infinite precision and a perfect ODE solver 
with no error term. So the chaotic behavior is intrinsic and has nothing to do with numerical 
errors or stability of the ODE solver or stiffness. 


