University of Washington AMATH 301 Spring 2017

Instructor: Dr. King-Fai Li

Lecture Notes

Week 8

Solving coupled ODEs in Matlab

For coupled equations:

$$\frac{dY_1}{dt} = Y_1 - Y_2 + 2$$
 and $\frac{dY_2}{dt} = -Y_1 + Y_2 + 4t$

with
$$Y_1(t=0.4) = -1$$
, $Y_2(t=0.4) = 0$.

Stability of ODEs — Concept of Stiffness

Consider $\frac{dy}{dt} = f(t, y)$. Suppose there is an error in y: $y = y_a + \varepsilon$, where y_a is the approximation

of y and ε is the corresponding error. Since $\frac{dy_a}{dt} = f(t, y_a)$, the ODE for ε is derived from

$$\frac{d(y_a + \varepsilon)}{dt} = f(t, y_a + \varepsilon) \approx f(t, y_a) + \frac{\partial f}{\partial y}\bigg|_{t, y} \varepsilon$$

$$\left. \frac{d\varepsilon}{dt} = \frac{\partial f}{\partial y} \right|_{t, y_a} \varepsilon \equiv \lambda \varepsilon$$

where
$$\lambda = \frac{\partial f}{\partial y}\Big|_{t, y_a}$$
.

Example 1: Euler's method

Consider the Euler's method with a mesh size h. Then the error grows as

$$\varepsilon_{n+1} = \varepsilon_n + h\lambda\varepsilon_n = (1+h\lambda)\varepsilon_n = (1+h\lambda)^2\varepsilon_{n-1} = \cdots = (1+h\lambda)^n\varepsilon_1$$

Therefore, the error will exponentially grow to ∞ unless $|1+h\lambda|<1$. For the Euler's method to work, thus we require

- 1. $\lambda < 0$
- 2. Step-size must satisfy $h < \frac{2}{|\lambda|}$

 $Q(h\lambda) = 1 + h\lambda$ is called the stability function for the Euler's method and it defines the stiffness of the ODE.

A small step size h, and hence a lot more computations, is required for stiff equations.

Example 2: Implicit Euler method

$$\varepsilon_{n+1} = \varepsilon_n + h\lambda\varepsilon_n = \frac{\varepsilon_n}{1 - h\lambda} = \frac{\varepsilon_{n-1}}{\left(1 - h\lambda\right)^2} = \dots = \frac{\varepsilon_1}{\left(1 - h\lambda\right)^n}$$

Therefore, as long as $\lambda < 0$, the implicit Euler method is always stable or "stiff". In general implicit methods are stiff.

Stiff solvers in Matlab:

ode15s, ode23s, ode23t, ode23tb, ode15i

Implicit Trapezoidal Rule (similar but not identical to ode23tb)

$$y_{2} = y_{1} + \int_{t_{1}}^{t_{2}} f(t, y(t)) dt$$

$$\approx y_{1} + \frac{h}{2} [f(t_{1}, y_{1}) + f(t_{2}, y_{2})]$$

Global errors $\sim O(h^2)$.

Use **fzero** or **fsolve** to solve for y₂.

Flame Model (From Mathworks.com)

The flame size of a match before and after scratching the matchbox can be described by

$$\frac{dy}{dt} = y^2 - y^3$$

In the following demonstration, ode45 will march slowly in time after the flame is set up after $t = \frac{1}{y_1}$ because of the stiffness; zooming in to the solution right after $t = \frac{1}{y_1}$ shows some

unexpected oscillations. ode23tb, on the other hand, produces a smooth solution after $t = \frac{1}{y_1}$, and is much faster to run at an expense of a less accurate solution.

```
% Demonstration of a stiff system
% AMATH301, 2015 Winter Term, U Washington
% Instructor: Dr. King-Fai Li
clear all; close all; clc;
% Flame model described in Mathworks.com
F = @(t,y) y.^2 - y.^3;
Y1 = 0.0001;
% Analytic solution
t = linspace(0, 2/y1, 1000);
a = 1/y1 - 1;
plot(t,1./(1+lambertw(a*exp(a-t))),'-r','LineWidth',1.2);
axis([t(1) t(end) 0 1.2])
hold on
% Plot as ODE45 calculates
ode45(F,[0 2/y1],y1);
figure(2)
plot(t,1./(1+lambertw(a*exp(a-t))),'-r','LineWidth',1.2);
axis([t(1) t(end) 0 1.2])
hold on
% Plot as ODE23tb calculates
ode23tb(F,[0 2/y1],y1);
```

Solution from ode45

Solution from ode23tb

Stability of Coupled ODE System

An example with 2 variables:

$$\frac{d\mathbf{Y}}{dt} = \mathbf{F}(t, \mathbf{Y}), \text{ where } \mathbf{Y}(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} \text{ and } \mathbf{F}(t, \mathbf{Y}) = \begin{bmatrix} f_1(t, y_1, y_2) \\ f_2(t, y_1, y_2) \end{bmatrix}$$

$$\frac{d\mathbf{\varepsilon}}{dt} = \mathbf{J}\mathbf{\varepsilon}, \text{ where } \mathbf{J} = \begin{bmatrix} \frac{\partial f_1}{\partial y_1} & \frac{\partial f_1}{\partial y_2} \\ \frac{\partial f_2}{\partial y_1} & \frac{\partial f_2}{\partial y_2} \end{bmatrix} \text{ is the Jacobian.}$$

For the Euler's method, $\mathbf{\varepsilon}_{n+1} = (\mathbf{I} + h\mathbf{J})^n \mathbf{\varepsilon}_1$.

Decompose **J** into its eigenvalue decomposition: $\mathbf{J} = \mathbf{V}\mathbf{S}\mathbf{V}^{-1}$, where $\mathbf{S} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$ is a diagonal matrix containing the (complex) eigenvalues. Then

$$\mathbf{\varepsilon}_{n+1} = (\mathbf{I} + h\mathbf{J})^n \mathbf{\varepsilon}_1$$

$$= (\mathbf{V}\mathbf{V}^{-1} + h\mathbf{V}\mathbf{S}\mathbf{V}^{-1})^n \mathbf{\varepsilon}_1$$

$$= \mathbf{V}(\mathbf{I} + h\mathbf{S})^n \mathbf{V}^{-1} \mathbf{\varepsilon}_1 \qquad \because (\mathbf{I} + h\mathbf{S}) \text{ is diagonal}$$

Therefore the Euler's method is stable if all λ satisfies $|1+h\lambda|<1$.

Chaotic Systems

$$\frac{d\mathbf{Y}}{dt} = \mathbf{F}(t, \mathbf{Y})$$

 $\mathbf{F}(t, \mathbf{Y})$ is nonlinear in t and \mathbf{Y} .

Example:

$$\frac{dx}{dt} = \sigma(y - x)$$

$$\frac{dy}{dt} = x(\rho - z) - y \quad \text{with} \quad \beta = \frac{8}{3}.$$

$$\frac{dz}{dt} = xy - \beta z \quad \rho = 28$$

The system is deterministic, but has little predictive power.

- 1. Deterministic: Given an initial condition, the system has only a unique evolution path.
- 2. Loss of predictive power: Given a tiny different initial condition, the system has a completely different evolution path. The difference grows exponentially.

#2 persists even if you have a perfect computer with infinite precision and a perfect ODE solver with no error term. So the chaotic behavior is intrinsic and has nothing to do with numerical errors or stability of the ODE solver or stiffness.