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Singular value decomposition (SVD) 

Any given 2D (real) matrix A can be factorized into a product of three 2D matrices: 
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Σ  is a non-negative, real diagonal matrix;   are called singular values. The columns of U  and 
V  are the left and right singular vectors, respectively. U and V  are unitary such that 

T T UU U U I  and T T VV V V I . U and V  are the eigenvectors of TAA and TA A : 
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Given an m n  matrix A , the SVD of A  can be obtained by 

[U,S,V]=svd(A,’econ’); 

 

Note: 

1. If A is complex, then replace the transpose by conjugate transpose, e.g. T A A . 

2. If the option ’econ’ is not turned on, then the decomposition will take the form
T

m n m m m n n n   A U Σ V . This may be slower if m n . 

  



Principal components analysis (PCA) 

Any given 2D matrix A can be factorized into a product of two 2D matrices: 

 T
m n m n n n  A Y V    

where the columns of Y  are the principal components and the columns of V  are the eigenvectors 
of the covariance matrix of A . By such definition, V  satisfies 

1T A A VSV  

Therefore, V  are just the right singular vectors of A  and 2S Σ . Then  Y AV UΣ . 

 

Given an m n  matrix A , the PCA of A  can be obtained by 

[V,Y,S2]=pca(A,’Centered’,’off’); 

where S2=S.^2 (up to some multiplicative constants). 

 

Note: 

1.  Prof. Kutz defined m n m n n n  A U Y . To follow his definition, then 

[U,Yt,S2]=pca(A','Centered','off'); Y=Yt'; 

 This form is used in Homework 5. 

2.  If the option ’Centered’ is not turned off, then Matlab will subtract the row mean by default, 

which sometimes will lead to confusions and incorrect conclusions. A good practice is to 
always remove the mean (whether row-wise or column-wise) yourself, and run pca 

with ’Centered’ turned off. 

 

Multidimensional datasets 

If A  has dimensions 1 pm n n   , then reshape A  such that it has dimensions m n , where

1 2 pn n n n  .  

e.g. For 3-D data sets 
 

[m,n1,n2]=size(A); A=reshape(A,[m,n1*n2]); 
 
Then SVD/PCA can be applied to the reshaped A . After the calculation, reshape A , U , V , 
and/or Y  back to the original dimensions. 
 
Note: To avoid too many zero singular values, A  should be reshaped such that m n . 
 



Physical Meaning 
For the sake of illustration, consider two time series at two different locations 

 

     1 1 1 1 2 1 nx t x t x t   x   

      2 2 1 2 2 2 nx t x t x t   x   

 
These two time series, however, may be correlated. To show this, make the scattered plot: 
 

 
 
This graph suggests that 1x  and 2x are NOT independent. Most of the variations can be adequately 

described in the principal direction 1u . There may be small variations in the other direction 2u  but 

the 1u  essentially captures everything. Thus 

 
1. If the new coordinate system is defined using the principal axes 1u  and 2u , then the 

above dataset is essentially 1-D. 
 

2. If the new coordinate system, then the data points are uncorrelated in the new 
coordinate system, i.e. the covariance matrix becomes diagonalized. 

 
It is thus more convenient to describe the data using 1u  and 2u . 

More generally, if there are m time series at different locations, form the data matrix  
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where each jx  is a column vector      1 2j j j j nx t x t x t   x  , then the principal axes u  

are the left singular vectors of A . 
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Example 1: Approximation of a Black-White Photo 

 
clear all; close all; 
pic = imread('taylor03.jpg');  % pic consists of 8-bit integers 
pic = squeeze(pic(:,:,1)); % black-white photo 
imshow(pic) 
 
% Do an SVD; SVD only accepts double numbers 
[U,S,V]=svd(double(pic),'econ'); 
 
% Add back the singular components one by one 
% to approximate the original photo 
for j=1:length(S) 
  pic1 = U(:,1:j)*S(1:j,1:j)*V(:,1:j)'; 
  imshow(uint8(pic1))  % imshow only accepts intergers 
  title(['j=' num2str(j)]); 
  pause 
end 
 
% SVD and PCA are equivalent 
[V,Y,S2]=pca(double(pic),'Centered','off'); 
for j=1:length(S2) 
  pic1 = Y(:,1:j)*V(:,1:j)'; 
  imshow(uint8(pic1)) 
  title(['j=' num2str(j)]); 
  pause 
end 
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Example 2: Approximation of a Color Photo 

 
clear all; close all; 
pic = imread('leonardo.jpg'); 
imshow(pic) 
%pic(:,:,2:3)=0;imshow(pic);    % See the red image 
%pic(:,:,[1 3])=0;imshow(pic);  % See the green image 
%pic(:,:,1:2)=0;imshow(pic);    % See the blue image 
 
% The color photo has the third dimension in RGB 
% Reshape the 3D picture into a 2D one by merging 
% the third dimension into the second. 
pic = reshape(pic,486,320*3); 
 
% PCA analysis in Prof. Kutz’s way 
[U,Yt,S2]=pca(double(pic'),'Centered','off'); Y=Yt'; 
 
% Add back the singular components one by one 
% to approximate the original photo 
for j=1:length(S2) 
  pic1 = U(:,1:j)*Y(1:j,:);  
  % Get the RGB dimension back 
  pic1 = reshape(pic1,486,320,3); 
  imshow(uint8(pic1)) 
  title(['j=' num2str(j)]); 
  pause 
end 
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Example 3: Face recognition — Decomposition of Multiple Photos 

Homework 5, Q1. 

 


