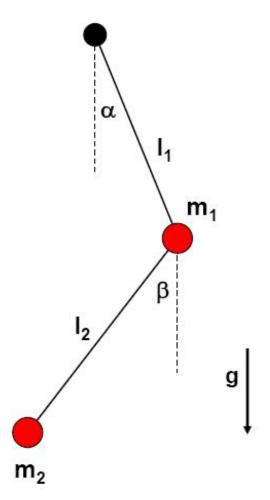
Comparison of Integrators in the Double Planar Pendulum

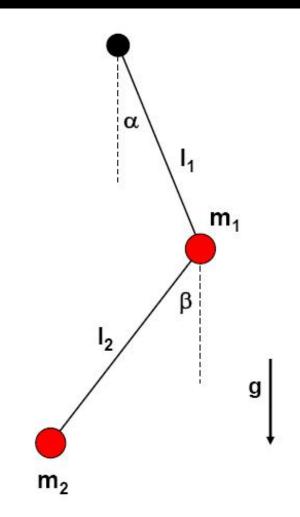


Steve Brunton

Integrators

- \Box Matlab's ODE45
 - Runge-Kutta 45
 - I keep timestep fixed
- □ Variational Integrator
 - Discretized Euler-Lagrange Equations
 - I use trapezoidal approximation
- \Box Benchmark
 - Adaptive step Runge-Kutta-Fehlberg 78
 - Nearly symplectic & preserves energy
- Goals
 - Conservation of Energy
 - Fast Runtime
 - Ease of Implementation

Lagrangian: L = T - V



$$T = \frac{1}{2}(m_1 + m_2)l_1\dot{\alpha}^2 + \frac{1}{2}m_2l_2^2\dot{\beta}^2 + m_2l_1l_2\dot{\alpha}\dot{\beta}\cos(\alpha - \beta)$$
$$V = (m_1 + m_2)l_1g(1 - \cos(\alpha)) + m_2l_2g(1 - \cos(\beta))$$

Euler-Lagrange Equations

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = 0$$

alternately,

$$M\ddot{q} + M\dot{q} = -\nabla V(q, \dot{q})$$

where

$$L = \frac{1}{2} \dot{q}^T M(q) \dot{q} - V(q)$$

□ Solve for $\ddot{\alpha}$ and $\ddot{\beta}$ □ Plug into RK45 or RK78 integrator

Variational Integration

\Box Approximate

$$L_d(q_k, q_{k+1}, h) \approx \int_{kh}^{(k+1)h} L(q, \dot{q}, t) dt$$

and replace

$$\delta \int_0^T L(q, \dot{q}, t) dt = 0$$

with

$$\delta \sum_{k=0}^{N-1} L_d(q_k, q_{k+1}, h) = 0$$

Discrete Euler-Lagrange Eq's

$$\delta \sum_{k=0}^{N-1} L_d(q_k, q_{k+1}, h) = 0$$

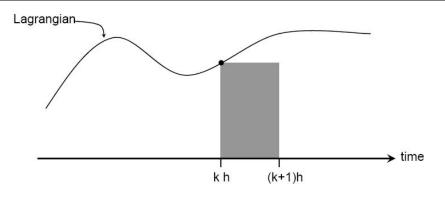
 $\implies \sum_{k=0}^{N-1} \left[D_1 L_d(q_k, q_{k+1}, h) \cdot \delta q_k + D_2 L_d(q_k, q_{k+1}, h) \cdot \delta k_{k+1} \right]$

$$=\sum_{k=1}^{N-1} \left[D_2 L_d(q_{k-1}, q_k, h) + D_1 L_d(q_k, q_{k+1}, h) \right] \cdot \delta q_k = 0$$

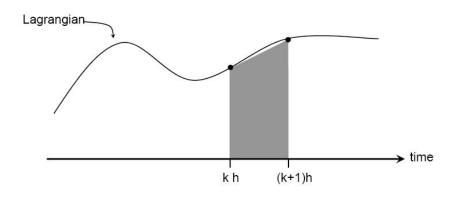
$$\implies D_2 L_d(q_{k-1}, q_k, h) + D_1 L_d(q_k, q_{k+1}, h) = 0$$

$\Box D_1$ and D_2 are slot derivatives

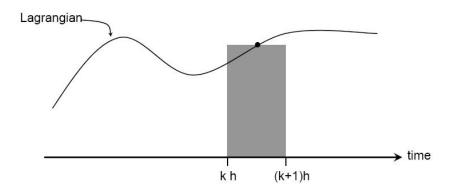
Approximating $\int_{kh}^{(k+1)h} Ldt$



Rectangle rule



□ Trapezoid rule



\Box Midpoint rule

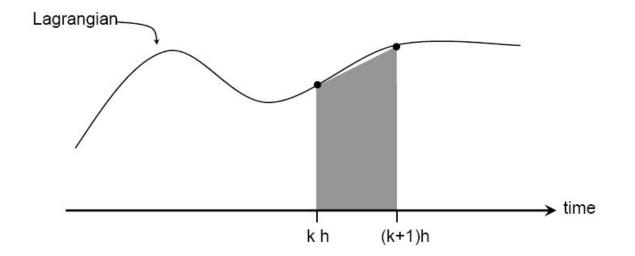
Trapezoid Rule Approximation

$$L_d^{trap} = \frac{h}{2} \left[L\left(q_k, \frac{q_{k+1} - q_k}{h}\right) + L\left(q_{k+1}, \frac{q_{k+1} - q_k}{h}\right) \right]$$

uses

$$\dot{q} = \frac{q_{k+1} - q_k}{h}$$

\Box Compute $D_2L_d(q_{k-1}, q_k, h)$ and $D_1L_d(q_k, q_{k+1}, h)$



Update Algorithm

$$p^{k} = \frac{\partial}{\partial q_{k}} L_{d}(q_{k-1}, q_{k}, h) = -\frac{\partial}{\partial q_{k}} L_{d}(q_{k}, q_{k+1}, h)$$
$$p^{k+1} = \frac{\partial}{\partial q_{k+1}} L_{d}(q_{k}, q_{k+1}, h)$$

Step 0: Start with q₀, p⁰
Step 1: Solve first equation for q_{k+1}
Step 2: Solve second equation for p^{k+1}
Step 3: Repeat Steps 1 & 2

Newton-Raphson Method

 \Box Iterative method to find root of f(q)

$$q_{k+1} = q_k - J^{-1}(k_k) \cdot f(q_k)$$

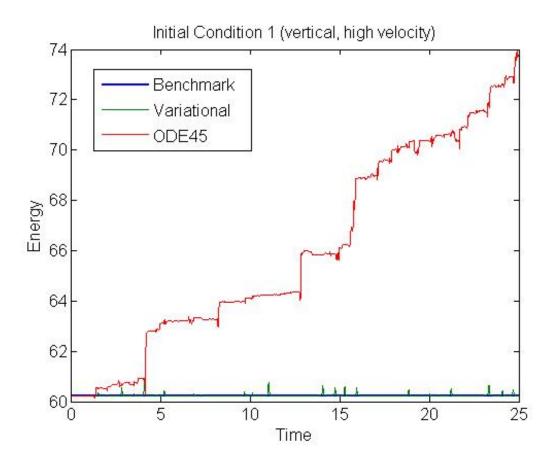
where

 $J(q_k) = Df(q_k)$ is the Jacobian

 \Box Converges very quickly for close guess q_0

Energy Conservation

 \Box Both bobs start vertical w/ some angular velocity



Variational integrator conserves energy
 ODE45 wrecks energy

Efficiency & Accuracy

□ Variational integrator with h = .01 is comparable to ODE45 with h = .0001

 \Box VI is not optimized, but is faster than ODE45

□ VI accuracy and speed are comparable to optimized RKF78 algorithm

□ VI equations are much more difficult than EL to derive and implement (downside)

Conclusions

 \Box Positives

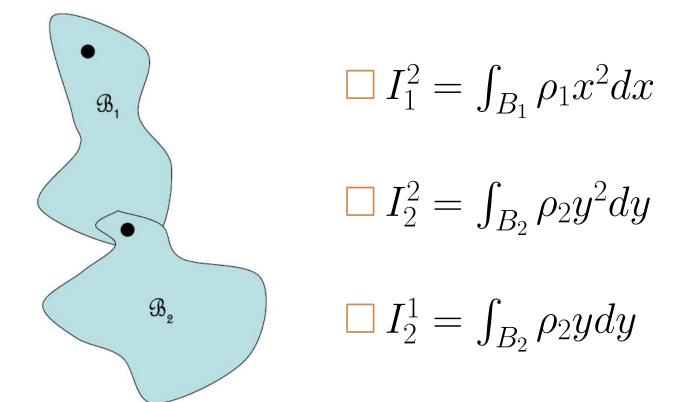
- Variational integrator outperforms ODE45
- VI competes with RKF78 algorithm
- VI conserves energy well, even with long integration times
- \Box Negatives
 - VI is considerably harder to implement

Future Directions

- Optimize variational integrator
- \Box Investigate other parameters m_1, m_2, l_1, l_2, g
- \Box VI with rectangle and midpoint approximations
- High resolution Poincaré sections
 Chaotic structure: horseshoes, symbolic dynamics
 Almost invariant sets
- □ Physically construct double pendulum
- \Box Forced double pendulum
- □ Investigate control issues

Arbitrarily Shaped Pendula

$$T = \frac{1}{2}\dot{\alpha}^{2}(I_{1}^{2} + L_{1}^{2}m_{2}) + \frac{1}{2}\dot{\beta}^{2}I_{2}^{2} + \dot{\alpha}\dot{\beta}\cos(\alpha - \beta)L_{1}I_{2}^{1}$$
$$V = (1 - \cos(\alpha))(R_{1}m_{1} + L_{1}m_{2})g + (1 - \cos(\beta))R_{2}m_{2}g$$



References

- Gawlik, E., J.E. Marsden and P. Du Toit, Variational integrators and the three-body problem. *Caltech SURF*, Final Report, [2006].
- Levien, R.R. and S.M. Tan, Double pendulum: An experiment in chaos. Am. J. Phys., 61 (11),1038-1044, [1993].
- Marsden, J.E. and M. West, Discrete mechanics and variational integrators. *Acta Numerica*, 357-514, [2001].

The End

Questions...

Typesetting Software: TEX, Textures, IATEX, hyperref, texpower, Adobe Acrobat 4.05 Illustrations: Adobe Illustrator 8.1 IATEX Slide Macro Packages: Wendy McKay, Ross Moore