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Integrators
� Matlab’s ODE45
•Runge-Kutta 45

• I keep timestep fixed

� Variational Integrator
•Discretized Euler-Lagrange Equations

• I use trapezoidal approximation

� Benchmark
•Adaptive step Runge-Kutta-Fehlberg 78

•Nearly symplectic & preserves energy

� Goals
•Conservation of Energy

•Fast Runtime

•Ease of Implementation
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Lagrangian: L = T − V

T =
1

2
(m1+m2)l1α̇

2+
1

2
m2l

2
2β̇

2+m2l1l2α̇β̇ cos(α−β)

V = (m1 + m2)l1g(1− cos(α)) + m2l2g(1− cos(β))
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Euler-Lagrange Equations
d

dt

∂L

∂q̇
− ∂L

∂q
= 0

alternately,

Mq̈ + Ṁ q̇ = −∇V (q, q̇)

where

L =
1

2
q̇TM(q)q̇ − V (q)

� Solve for α̈ and β̈

� Plug into RK45 or RK78 integrator
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Variational Integration
� Approximate

Ld(qk, qk+1, h) ≈
∫ (k+1)h

kh

L(q, q̇, t)dt

and replace

δ

∫ T

0

L(q, q̇, t)dt = 0

with

δ
N−1∑
k=0

Ld(qk, qk+1, h) = 0
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Discrete Euler-Lagrange Eq’s

δ
N−1∑
k=0

Ld(qk, qk+1, h) = 0

=⇒
N−1∑
k=0

[D1Ld(qk, qk+1, h) · δqk + D2Ld(qk, qk+1, h) · δkk+1]

=

N−1∑
k=1

[D2Ld(qk−1, qk, h) + D1Ld(qk, qk+1, h)] · δqk = 0

=⇒ D2Ld(qk−1, qk, h) + D1Ld(qk, qk+1, h) = 0

� D1 and D2 are slot derivatives
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Approximating
∫ (k+1)h

kh Ldt

� Rectangle rule

� Trapezoid rule

� Midpoint rule
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Trapezoid Rule Approximation

Ltrap
d =

h

2

[
L

(
qk,

qk+1 − qk

h

)
+ L

(
qk+1,

qk+1 − qk

h

)]
uses

q̇ =
qk+1 − qk

h

� Compute D2Ld(qk−1, qk, h) and D1Ld(qk, qk+1, h)
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Update Algorithm

pk =
∂

∂qk
Ld(qk−1, qk, h) = − ∂

∂qk
Ld(qk, qk+1, h)

pk+1 =
∂

∂qk+1
Ld(qk, qk+1, h)

�Step 0: Start with q0, p
0

�Step 1: Solve first equation for qk+1

�Step 2: Solve second equation for pk+1

�Step 3: Repeat Steps 1 & 2
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Newton-Raphson Method
� Iterative method to find root of f (q)

qk+1 = qk − J−1(kk) · f (qk)

where

J(qk) = Df (qk) is the Jacobian

� Converges very quickly for close guess q0
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Energy Conservation
� Both bobs start vertical w/ some angular velocity

� Variational integrator conserves energy

� ODE45 wrecks energy
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Efficiency & Accuracy
� Variational integrator with h = .01 is

comparable to ODE45 with h = .0001

� VI is not optimized, but is faster than ODE45

� VI accuracy and speed are comparable to

optimized RKF78 algorithm

� VI equations are much more difficult than EL

to derive and implement (downside)
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Conclusions
� Positives

•Variational integrator outperforms ODE45

•VI competes with RKF78 algorithm

•VI conserves energy well, even with long

integration times

� Negatives

•VI is considerably harder to implement

13



Future Directions
� Optimize variational integrator

� Investigate other parameters m1, m2, l1, l2, g

� VI with rectangle and midpoint approximations

� High resolution Poincaré sections

� Chaotic structure: horseshoes, symbolic dynamics

� Almost invariant sets

� Physically construct double pendulum

� Forced double pendulum

� Investigate control issues
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Arbitrarily Shaped Pendula

T =
1

2
α̇2(I2

1 + L2
1m2) +

1

2
β̇2I2

2 + α̇β̇ cos(α− β)L1I
1
2

V = (1−cos(α))(R1m1+L1m2)g+(1−cos(β))R2m2g

� I2
1 =

∫
B1

ρ1x
2dx

� I2
2 =

∫
B2

ρ2y
2dy

� I1
2 =

∫
B2

ρ2ydy
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The End

Questions...

Typesetting Software: TEX, Textures, LATEX, hyperref, texpower, Adobe Acrobat 4.05
Illustrations: Adobe Illustrator 8.1
LATEX Slide Macro Packages: Wendy McKay, Ross Moore


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

