AMATH 581 Autumn Quarter 2016

Homework 1: Quantum Harmonic Oscillator

DUE: Friday, October 14, 2016 (actually at 3am on 10/15)

The probability density evolution in a one-dimensional harmonic trapping potential is governed by the partial differential equation:

$$i\hbar\psi_t + \frac{\hbar^2}{2m}\psi_{xx} - V(x)\psi = 0, \qquad (1)$$

where ψ is the probability density and $V(x) = kx^2/2$ is the harmonic confining potential. A typical solution technique for this problem is to assume a solution of the form

$$\psi = \sum_{1}^{N} a_n \phi_n(x) \exp\left(-i\frac{E_n}{2\hbar}t\right)$$
(2)

which is called an eigenfunction expansion solution (ϕ_n =eigenfunction, E_n =eigenvalue). Plugging in this solution ansatz to Eq. (1) gives the boundary value problem:

$$\frac{d^2\phi_n}{dx^2} - \left[Kx^2 - \varepsilon_n\right]\phi_n = 0 \tag{3}$$

where we expect the solution $\phi_n(x) \to 0$ as $x \to \pm \infty$ and ε_n is the quantum energy. Note here that $K = km/\hbar^2$ and $\varepsilon_n = E_n m/\hbar^2$. In what follows, take K = 1 and always normalize so that $\int_{\infty}^{\infty} |\phi_n|^2 dx = 1$.

(a) Calculate the first five normalized eigenfunctions (ϕ_n) and eigenvalues (ε_n) using a shooting scheme. For this calculation, use $x \in [-L, L]$ with L = 4 and choose xspan = -L : 0.1 : L. Save the absolute value of the eigenfunctions in a 5-column matrix (column 1 is ϕ_1 , column 2 is ϕ_2 etc.) and the eigenvalues in a 1x5 vector.

ANSWERS: Should be written out as A1.dat (eigenfunctions) and A2.dat (eigenvalues)