
276

3. Generate the shape functions

N (i)
j = a(i)j + b(i)j x+ c(i)j y (11.2.17)

where i = 1, 2, 3, ...,m and j = 1, 2, 3, ...,m.

4. Compute the integrals for matrix elements αij and vector elements βj in
the interior and boundary.

5. Construct the matrix A and vector b.

6. Solve Ax = b.

7. Plot the solution u(x, y) =
∑m

i=1 γiφi(x, y).

For a wide variety of problems, the above procedures can simply be automated.
That is exactly what commercial packages do. Thus once the coefficients and
boundary conditions associated with (11.2.1), (11.2.2), and (11.2.3) are known,
the solution procedure is straightforward.

11.3 MATLAB for Partial Differential Equations

Given the ubiquity of partial differential equations, it is not surprising that
MATLAB has a built in PDE solver: pdepe. Thus the time and space dis-
cretization, as well as time-stepping within the CFL tolerances, are handled
directly as a subroutine call to MATLAB. This is similar to using a differential
equation solver such as ode45. The following specific PDE can be solved with
pdepe:

c

(
x, t, u,

∂u

∂x

)
∂u

∂t
= x−m ∂

∂x

[
xmf

(
x, t, u,

∂u

∂x

)]
+ s

(
x, t, u,

∂u

∂x

)
(11.3.1)

where u(x, t) generically is a vector field, t ∈ [t−, t+] is the finite time range
to be solved for, x ∈ [a, b] is the spatial domain of interest, and m = 0, 1 or
2. The integer m arises from considering the Laplacian operator in cylindrical
and spherical coordinates for which m = 1 and m = 2 respectively. Note that
c(x, t, u, ux) is a diagonal matrix with identically zero or positive coefficients.
The functions f(x, t, u, ux) and s(x, t, u, ux) correspond to a flux and source
term respectively. All three functions allow for time and spatially dependent
behavior that can be nonlinear.

In addition to the PDE, boundary conditions must also be specific. The
specific form required for pdepe can be nonlinear and time dependent so that:

p(x, t, u) + q(x, t)g(x, t, u, ux) = 0 at x = a, b . (11.3.2)

As before p(x, t, u) and g(x, t, u, ux) is time and spatially dependent behavior
that can be nonlinear. The function q(x, t) is simply time and space dependent.



277

Heat Equation

To start, consider the simplest PDE: the heat equation:

π2 ∂u

∂t
=
∂2u

∂x2
(11.3.3)

where the solution is defined on the domain x ∈ [0, 1] with the boundary condi-
tions

u(0, t) = 0 (11.3.4a)

π exp(−t) +
∂u(1, t)

∂t
= 0 (11.3.4b)

and initial conditions
u(x, 0) = sin(πx) . (11.3.5)

This specifies the PDE completely and allows for the construction of a unique
solution. In MATLAB, the pdepe function call relies on three subroutines that
specify the PDE, initial conditions and boundary conditions. Before calling
these, the time and space grid must be defined. The following code defines the
time domain, spatial discretization and plots the solution

m = 0;
x = linspace(0,1,20);
t = linspace(0,2,5);
u = pdepe(m,’pdex1pde’,’pdex1ic’,’pdex1bc’,x,t);
surf(x,t,u)

It only remains to specify the three subroutines. The PDE subroutine is con-
structed as follows.

pdex1pde.m

function [c,f,s] = pdex1pde(x,t,u,DuDx)
c = pi^2;
f = DuDx;
s = 0;

In this case, the implementation is fairly straightfoward since s(x, t, u, ux) = 0,
m = 0, c(x, t, u, ux) = π2 and f(x, t, u, ux) = ux. The initial condition is quite
easy and can be done in one line.

pdex1ic.m

function u0 = pdex1ic(x)
u0 = sin(pi*x);



278

Finally, the left and right boundaries can be implemented by specifying the
function q, q and g at the right and left.

pdex1bc.m

function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t)
pl = ul;
ql = 0;
pr = pi * exp(-t);
qr = 1;

Combined, the subroutines quickly and efficiently solve the heat equation with
a time-dependent boundary condition.

Fitzhugh-Nagumo Equation

Overall, the combination of (11.3.1) with boundary conditions (11.3.2) allows for
a fairly broad range of problems to solve. As a more sophisticated example, the
Fitzhugh-Nagumo equation is considered which models the voltage dynamics
in neurons. The Fitzhugh-Nagumo model supports the propagation of voltage
spikes that are held together in a coherent structure through the interaction of
diffusion, nonlinearity and coupling to a recovery field. Thus we will consider
the following system of PDEs:

∂V

∂t
= D

∂2V

∂x2
+ V (a− V )(V − 1)−W (11.3.6a)

∂W

∂t
= bV − cW . (11.3.6b)

where V (x, t) measures the voltage in the neuron. The following initial condi-
tions will be applied that generate a voltage spike moving from left to right in
time.

V (x, 0) = exp(−x2) (11.3.7a)

W (x, 0) = 0.2 exp(−(x+ 2)2) . (11.3.7b)

Finally, boundary conditions must be imposed on the PDE system. For conve-
nience, no flux boundary conditions will be applied at both ends of the compu-
tational domain so that

∂V

∂x
= 0 and

∂W

∂x
= 0 at x = a, b (11.3.8)

The partial differential equation along with the boundary conditions and initial
conditions completely specify the system.

The Fitzhugh-Nagumo PDE system is a vector sytem for the field variables
V (x, t) and W (x, t). Before calling on pdepe, the time and space domain
discretization is defined along with the parameter m:



279

m = 0;
x = linspace(-10,30,400); % space
t = linspace(0,400,20); % time

In this example, the time and space domains are discretized with equally spaced
∆t and ∆x. However, an arbitrary spacing can be specified. This is especially
important in the spatial domain as there can be, for instance, boundary layer
effects near the boundary where a higher density of grid points should be im-
posed.

The next step is to call upon pdepe in order to generate the solution. The
following code picks the parameters a, b and c in the Fithugh-Nagumo and passes
them into the PDE solver. The final result is the generation of a matrix sol
that contains the solution matrices for both V (x, t) and W (x, t).

A=0.1; B=0.01; C=0.01;
sol = pdepe(m,’pde_fn_pde’,’pde_fn_ic’,’pde_fn_bc’,x,t,[],A,B,C);

u1 = sol(:,:,1);
u2 = sol(:,:,2);

waterfall(x,t,u1), map=[0 0 0]; colormap(map), view(15,60)

Upon solving, the matrix sol is generates which is 20× 400× 2. The first layer
of this matrix cube is the voltage V (x, t) in time and space (u1) and the second
layer is the recovery field W (x, t) in time and space (u2). The voltage, and the
propagating wave is plotted using waterfall.

What is left is to define the PDE itself (pdepe fn pde.m), its boundary
conditions (pdepe fn bc.m) and its initial conditions (pdepe fn ic.m). We
begin by developing the function call associated with the PDE itself.

pdepe fn pde.m

function [c,f,s] = pde_fn_pde(x,t,u,DuDx,A,B,C)
c = [1; 1]; % c diagonal terms
f = [0.01; 0] .* DuDx; % diffusion term

rhsV = u(1)*(A-u(1))*(u(1)-1) - u(2);
rhsW = B*u(1)-C*u(2);
s = [rhsV; rhsW];

Note that the specification of c(x, t, u, ux) in the PDE must be diagonal matrix.
Thus the PDE call only allows for the placement of these diagonal elements
into a vector that must have positive coefficients. The diffusion operator and
the derivative are specified by f and DuDx respectively. Once the appropriate
terms are constructed, the right-hand side is fully formed in the matrix s. Note



280

−10
0

10
20

30 0

100

200

300

400

−0.5

0

0.5

1

t

x

V(
x,
t)

Figure 92: The solution of the Fitzhugh-Nagumo partial differential equation
with no flux boundary conditions.

the similarity between this and the construction involved in ode45. We next
implement the initial conditions.

pdepe fn ic.m

function u0 = pde_fn_ic(x,A,B,C)
u0 = [1*exp(-((x)/1).^2)

0.2*exp(-((x+2)/1).^2)];

Arbitrary initial conditions can be applied, but preferably, one would imple-
ment initial conditions consistent with the boundary conditions. The boundary
conditions are implemented in the following code.

pdepe fn bc.m

function [pl,ql,pr,qr] = pde_fn_bc(xl,ul,xr,ur,t,A,B,C)
pl = [0; 0];
ql = [1; 1];
pr = [0; 0];
qr = [1; 1];

Here the pl and ql are the functions p(x, t, u) and q(x, t) respectively at the left
boundary point while pr and qr are the functions p(x, t, u) and q(x, t) at the
right boundary point.



281

Figure 93: Graphical user interface of the partial differential equations GUI.
The interface is activated by the command pdetool.

Figure 92 demonstrates the formation of a spike and its propagation using
the pdepe methodology. Note that the time step used is not determined by the
initial time vector used for output. Rather, just like the adaptive differential
equation steppers, a step size ∆t is chosen to ensure a default accuracy of 10−6.
The spatial discretization, however, is absolutely critical as the method uses the
user specified mesh in space. Thus it is imperative to choose a fine enough mesh
in order to avoid numerical inaccuracies and instabilities.

11.4 MATLAB Partial Differential Equations Toolbox

In addition to the pdepe function call, MATLAB has a finite element based
PDE solver. Unlike pdepe, which provides solutions to one-dimensional parabolic
and elliptic type PDEs, the PDE toolbox allows for the solution of linear, two-
dimensional PDE systems of parabolic, elliptic and hyperbolic type along with



282

Figure 94: User interface for PDE specification along with boundary conditions
and domain. The icons can be activated from left to right in order to (i) specify
the domain, (ii) specify the boundary conditions, (iii) specify the PDE, (iv)
implement a mesh, and (v) solve the PDE.

eigenvalue problems. In particular, the toolbox allows for the solution of

elliptic : Lu = f(x, y, t) (11.4.1a)

eigenvalue : Lu = λd(x, y, t)u (11.4.1b)

parabolic : d(x, y, t)
∂u

∂t
+ Lu = f(x, y, t) (11.4.1c)

hyperbolic : d(x, y, t)
∂2u

∂t2
+ Lu = f(x, y, t) (11.4.1d)

where L denotes the spatial linear operator

Lu = −∇ · (c(x, y, t)∇u) + a(x, y, t)u (11.4.2)

where x and y are on a given domain Ω. The functions d(x, y, t), c(x, y, t),
f(x, y, t) and a(x, y, t) can be fairly arbitrary, but should be, generically, well
behaved on the domain Ω.

The boundary of the domain, as will be shown, can be quite complicated.
On each portion of the domain, boundary conditions must be specified which are
of the Dirichlet or Neumann type. In particular, each portion of the boundary
must be specified as one of the following:

Dirichlet : h(x, y, t)u = r(x, y, t) (11.4.3a)

Neumann : c(x, y, t)(n ·∇u) + q(x, y, t)u = g(x, y, t) (11.4.3b)

where h(x, y, t), r(x, y, t), c(x, y, t), q(x, y, t) and g(x, y, t) can be fairly arbitrary
and n is the unit normal vector on the boundary. Thus the flux across the
boundary is specified with the Neumann boundary conditions.

In addition to the PDE itself and its boundary conditions, the initial con-
dition must be specified for the parabolic and hyperbolic manifestation of the
equation. The initial condition is a function specified over the entire domain Ω.

Although the PDE toolbox is fairly general in terms of its non-constant co-
efficient specifications, it is a fairly limited solver given that it can only solve
linear problems in two-dimensions with up to two space and time derivatives.
If considering a problem that can be specified by the conditions laid out above,



283

Figure 95: User interface for PDE boundary condition specification. Simply
double click on a given boundary and specify Dirichlet (top figure) or Neumann
(bottom figure) on the boundary selected. Note that the boundary will appear
red if it is Dirichlet and blue if it is Neumann.

then it can provide a fast and efficient solution method with very little devel-
opment costs and overhead. Parenthetically, it should be noted that a wide
variety of other professional grade tools exist that also require specifying the
above constraints. And in general, every one of these PDE toolboxes is limited
by a constrained form of PDE and boundary conditions. To access the toolbox
in MATLAB, simply type

pdetool

in MATLAB and a graphical user interface (GUI) will appear guiding one
through the setup of the PDE solver.

Figure 93 shows the basic user interface associated with the MATLAB PDE
toolbox GUI. An initial domain and mesh are displayed for demonstration pur-
poses. In what follows, a step-by-step outline of the use of the GUI will be
presented. Indeed, the GUI allows for a natural progression that specifies (i)
the domain on which the PDE is to be considered, (ii) the specific PDE to be
solved, (iii) the boundary conditions on each portion of the domain, (iv) the res-
olution and grid for which to generate the solution. Generically, each of these
steps is performed by following the graphical icons aligned on the top of the
GUI (See Fig. 94).



284

Figure 96: User interface for PDE specification. Four choices are given repre-
senting the equations given in (11.4.1).

Domain Specification

To begin, the domain is specified using a variety of drawing tools in the
PDE toolbox. In particular, one can draw rectangles (boxes), ellipses (circles)
and/or polygons. The first five icons of the top bar of the GUI, demonstrated in
Fig. 94, shows the various options available. In particular, the first icon allows
one to draw a rectangle (box) where two corners of the rectangle are specified
(first icon) or the center and outside of the rectangle are specified (second icon).
Similarly, the third and fourth icon specify the outsides of an ellipse (circle) or
its center and semi-major/minor axes. The fifth icon allows one to specify a
closed polygon for a boundary. One can also import a boundary shape and/or
rotate a given object of interest. The set formula Fig. 94 allows you to specify
wether the domains drawn are added together, or in case of generating holes in
the domain, subtracted out. The rectangles, ellipses and polygons are denoted
by Rk, Ek and Pk where k is the numbering of the object. Figure 93, for in-
stance, shows the formula R1+E1 since the domain is comprised of a rectangle
and an ellipse.

Boundary Condition Specification

The sixth icon is given by ∂Ω and represents the specification of the boundary
conditions. Either Dirichlet or Neumann are specified in the form of (11.4.3).
Figure 95 shows the GUI that appears for specifying both types of bound-
ary conditions. The default settings for Dirichlet boundary conditions are
h(x, y, t) = 1 and r(x, y, t) = 0. The default settings for Neumann bound-
aries are q(x, y, t) = g(x, y, t) = 0.

PDE Specification



285

Figure 97: Plot of the solution of Laplace’s equation with flux conditions on
the left and right boundaries and no-flux on the top and bottom and internal
boundaries. This represents a potential solution to the stream function equation
where the gradient (velocity) field is plotted representing the flow lines.

The PDE to be solved is specified by the seventh icon labeled PDE. This
will allow the user to specify one of the PDEs given in (11.4.1). Figure 96
demonstrates the PDE specification GUI and its four options. A parabolic PDE
specification is demonstrated in the figure. The default settings are c(x, y, t) =
d(x, y, t) = 1, a(x, y, t) = 0 and f(x, y, t) = 10

Grid Generation and Refinement

A finite element grid can be generated by applying the eighth icon (a trian-
gle). This will automatically generate a set of triangles that cover the domain of
interest where a higher density of triangles (discretization) points are automat-
ically placed at locations where geometry changes occur. To refine the mesh,
the ninth icon (a triangle within a triangle) can be executed. This refinement
can be applied a number of times in order to achieve a desired grid resolution.

Solving the PDE and Plotting Results

The PDE can then be solved by executing the 10th icon which is an equals
sign. This will solve the specified PDE with prescribed boundary conditions and
domain. In order to specify initial conditions and/or the time domain, the solve
button must be pushed and the parameters button from the drag down menu
executed. For a parabolic PDE, the initial condition is u(x, y, 0) = 0, while
for a hyperbolic PDE, the initial conditions are u(x, y, 0) = ux(x, y, 0) = 0.
The tolerance and accuracy for the time-stepping routine can also be adjusted



286

from this drag down menu. The solution will automatically appear once the
computation is completed. The MATLAB icon, which is the eleventh icon,
allows for full control of the plotting routines.

As an example, Laplace’s equation is solved on a rectangular domain with
elliptical internal boundary constraints. This can potentially model the flow
field, in terms of the stream function, in a complicated geometry. The bound-
aries are all subject to Neumann boundary conditions with the top and bottom
and internal boundaries specifying no-flux conditions. The left and right bound-
ary impose a flow of the field from left-to-right. The gradient of the solution
field, i.e. the velocity of the flow field, is plotted so that the steady state flow
can be constructed over a complicated domain.


