Upper-Limb Orthotics

REHAB 442: Kinesiology and Biomechanics
Brian J. Dudgeon, Ph.D., OTR
Upper-Limb Orthotics: Today’s Goals

• Differentiate functions of the arm versus the leg and implications for orthotics
• Recognize and describe purposes of orthotics used with the upper-limb
• Conceptualize and appreciate kinesiological or biomechanical principles applied through uses of upper-limb orthotics

Forces and the Upper-limb

• Observation and visualization of forces
 – Most important force?
 • Gravity
 – Arm: 5% of body weight (9 lbs of 180 lb body weight)
 – Hand: .6% of body weight (1.08 lbs of 180 lb body weight)
 – Other important forces?
 • Tissue resistance: Muscle tone, Healing soft tissue
 – Force on Force Contact?
 • Pressure, Shear
 • Line of force? Perpendicular
functions of the upper-limb

• different roles of arms versus legs
 – lower-limb:
 • discrete functions in relation to balance and gait, various components of mobility
 – upper-limb:
 • balance and mobility
 • multiple functions including reach (placement of hand), prehension (power grasp and precision grasp or pinch), transitional movements (in-hand manipulation), carrying (handling), and release

what about orthotics

• terminology (mosby)
 • orthotics: external appliances to support paralyzed muscles, promote specific motions, or correct musculoskeletal deformities.
 • splint: appliance to protect, immobilize, restrain, or support a part of the body.
 • brace: bind, or support and hold in a correct position to allow function.

• kinesiology definition
 – application of forces to correct abnormal forces acting on the limb—often to protect tissues, prevent abnormality, or promote function.
What about using Orthotics?

- **Lower-Limb Orthotics**
 - Operate to stabilize distal joints in extension or neutral position (so that weight can be taken through the limb).
 - Try to control body motion, momentum forces
 - Ground reaction forces (absorption)
 - Push-off forces (propelling)
 - Generally serve the “closed-kinetic chain” wherein distal stability supports proximal motion

(AFO-KAFO-HKAFO ⇒ WHEELS)

What about using Orthotics?

- **Upper-Limb Orthotics**
 - Operate to provide stability to proximal joints so that distal joints can be mobile
 - Try to promote motion by optimizing or balancing forces
 - Enhance placement of the hand (reach)
 - Enhance manipulation with the hand (grasp, transition, release)
 - Generally serve the “Open Kinetic Chain” wherein proximal stability supports distal mobility
Upper-limb forces

• Mechanically balanced forces
 – agonist and antagonist

• Synergistic mechanical actions
 – Redundant forces, as well as
 – Unique (independent) forces

Examples

– Tenodesis action of wrist and fingers
 • Grasp and release with long finger flexors and extensors
 • Extension of wrist creates some grasp by shortening of flexors, and flexion of wrist creates some release by shortening of extensors

– Shoulder Abduction
 • Deltoid (some Supraspinatus) Action
 • Little else works, replacing action is difficult
Upper-Limb Function

- Complex Tool
- Mobile off a stable trunk (Open Kinetic Chain)
- Proximal Stability for Distal mobility
- Assists with balancing of body
Purposes of Orthotics

- **Therapeutic**
 - Stabilize
 - Mobilize
 - Aid in healing
 - Prevent or reduce contracture development

- **Functional**
 - Stabilize proximally
 - Enable or maximize muscle action
 - Assist movement
 - Substitute for muscle action
 - Base for attaching functional tools

- **Static**
 - immobilization, pressure

- **Drop-out**
 - gravity stretch force

- **Articulated**
 - guide arc of motion

- **Dynamic**
 - stretch forces

- **Static Progressive or Serial**

Self-care, Work and Play Functions
Whole arm and hand
Purposes of Orthotics

Types of Orthotics

- **Permanent (relative)**
 - **Purpose**
 - Functional Use
 - **Materials**
 - Metals and High temperature plastics
 - Plaster molding
 - **Fabricator**
 - Orthotists
 - Occupational therapists

- **Temporary**
 - **Purpose**
 - Short term, therapeutic
 - **Materials**
 - Plaster-of-paris
 - Low temperature thermoplastics 135-180°
 - **Fabricator**
 - Occupational Therapist
 - Physical Therapist
Orthotics to Enhance Function

- Application of static or dynamic forces
- Lever action
 - First order
 - Second order
 - Third order
- Pressure distribution

Mechanical Advantage

- **First order**
 - balance around a fulcrum
- Second order
 - mechanical advantage
 - force over long lever arm
- Third order
 - mechanical disadvantage
 - force over short lever arm
Mechanical Advantage

• First order
 – balance around a fulcrum

• Second order
 – mechanical advantage
 – force over long lever arm

• Third order
 – mechanical disadvantage
 – force over short lever arm
Mechanical Advantage

• First order
 – balance around a fulcrum
• Second order
 – mechanical advantage
 – force over long lever arm
• Third order
 – mechanical disadvantage
 – force over short lever arm

Pressure Tolerance

• Force through skin surface area ("2/3rds rule")
• Greater force needs greater surface area
• Perpendicular forces better than shearing forces
• Skin isn’t very flat- must contour or shape to surface
Orthotic Applications

- Combination of levers and pressures
 - Examples:
 - Shoulder slings
 - Mobile arm supports
 - Rancho slings
 - Wrist cock-up splint
 - Hand splint with attachments
 - Long/short opponens splints
 - RIC Tenodesis
 - Wrist driven flexor hinge splints
 - Others
Functional Uses of Orthotics

- Not easy!
- “Evidence”
- Function vs. Disruption?
- Long-term uses are not very common
- Promotes motor but impairs sensory capacity

Shoulder Slings

Third order lever disadvantage
Mobile Arm Supports

Second order lever advantage

Rancho-like Slings

Second order lever advantage
Wrist Cock-up

First order lever: Balance each side of fulcrum

Resting Hand Splint
Long Opponens

Short Opponens
RIC Tenodesis

Wrist Driven Flexor Hinge

Figure 64. Wrist-Driven Flexor Hinge Splint
Radial Nerve Palsy

- Forearm-based
- Hand-based

Upper-Limb Function

- Complex Tool
- Mobile off a stable trunk (Open Kinetic Chain)
- Proximal Stability for Distal mobility
- Assists with balancing of body
Architecture of the hand

• Physiological Maintenance (homeostasis)
• Mechanical Advantage
• Function

Purposes of Orthotics

• Therapeutic
 – Stabilize
 – Mobilize
 – Aid in healing
 – Prevent or reduce contracture development

• Functional
 – Stabilize proximally
 – Enable or maximize muscle action
 – Assist movement
 – Substitute for muscle action
 – Base for attaching functional tools
Purposes of Orthotics

• Therapeutic
 – Stabilize
 – Mobilize
 – Aid in healing
 – Prevent or reduce contracture development

• Therapeutic
 – Static
 • immobilization, pressure
 – Drop-out
 • gravity stretch force
 – Articulated
 • guide arc of motion
 – Dynamic
 • stretch forces
 – Static Progressive or Serial
Purposes of Orthotics

• Therapeutic
 – Static
 • immobilization, pressure
 – Drop-out
 • gravity stretch force
 – Articulated
 • guide arc of motion
 – Dynamic
 • stretch forces
 – Static Progressive or Serial
Purposes of Orthotics

- Therapeutic
 - Static
 - immobilization, pressure
 - Drop-out
 - gravity stretch force
 - Articulated
 - guide arc of motion
 - Dynamic
 - stretch forces
 - Static Progressive or Serial

- Kinetec Maestra Portable Hand CPM
Purposes of Orthotics

• Therapeutic
 – Static
 • immobilization, pressure
 – Drop-out
 • gravity stretch force
 – Articulated
 • guide arc of motion
 – Dynamic
 • stretch forces
 – Static Progressive or Serial

UL Orthotics (Principles)

• Increase mechanical advantages
• Long and wide coverage (rolled edges) to displace pressures
• Allow all available prehension patterns
• Don't extend into boundaries of adjacent joints which are left free, only restrict necessary joints
• Allow normal anatomical properties (arches of hand, normal angle of tendon action)
• Eliminate friction/shear
• Apply correct force (100-300 grams= F x D)
• Use optimal rotational force (90°)
UL Orthotics

• Functional
 – Stabilize proximally
 – Enable or maximize muscle action
 – Assist Movement
 – Substitute for muscle action
 – Base for attaching a functional device
UL Orthotics

- Functional
 - Stabilize proximally
 - Enable or maximize muscle action
 - Assist Movement
 - Substitute for muscle action
 - Base for attaching a functional device
UL Orthotics

• Functional
 – Stabilize proximally
 – Enable or maximize muscle action
 – Assist Movement
 – Substitute for muscle action
 – Base for attaching a functional device