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Observational Learning in Octopus vulgaris 

Graziano Fiorito and Pietro Scotto 
Untrained Octopus vulgaris (observers) were allowed to watch conditioned Octopus (dem- 
onstrators) perform the task of selecting one of two objects that were presented simul- 
taneously and differed only in color. After being placed in isolation, the observers, in a 
similar test, consistently selected the same object as did the demonstrators. This learning 
by observation occurred irrespective of the object chosen by the demonstrators as the 
positive choice and was more rapid than the learning that occurred during the conditioning 
of animals. The task was performed correctly without significant errors and further condi- 
tioning for 5 days. These results show that observational learning can occur in invertebrates. 

Octopuses, like many other invertebrate 
species, are capable of a learned change in 
behavior as a result of experience (1-4), 
demonstrating that Octopus can integrate 
information to produce adaptive behavioral 
patterns (5). Among vertebrates living in 
social groups, learning can be facilitated by 
observation of another member of the same 
species (conspecific) performing a behavior- 
al act (6, 7). 

Octopus vulgaris does not have social hab- 
its, which implies that it has little experi- 
ence observing the behavior of conspecifics. 
However, some cephalopods are social, and 
specialized behavioral patterns are exhibited 
when octopuses come in contact with each 
other (8). Therefore, we tested whether 
octopuses can learn to perform a task by 
observation of other trained octopuses. 

Individuals of Octopus vulgaris were con- 
ditioned to discriminate between two stim- 
uli that were identical in shape and size but 
differed in color (9). Training was followed 
by a session of trials while an untrained 
Octopus visually observed the choices made 
by the conditioned demonstrator. Experi- 
ments to investigate the ability of Octopus 
vulgaris (10) to learn by observation were 
conducted in three phases: (i) training of 
demonstrators, (ii) observation of the task 
by untrained octopuses, and (iii) testing of 
observers. 

G. Fiorito, Laboratorio di Neurobiologia, Stazione Zo- 
ologica A. Dohrn di Napoli, 1-80121 Napoli, Italy. 
P. Scotto, Cattedra di Fisiologia Umana, Universita di 
Reggio Calabria, 1-88100 Catanzaro, Italy. 

Training of demonstrators (I I) was re- 
alized by a series of trials where two balls 
were presented to the animal. We selected 
one ball to be the correct choice. When the 
animal attacked the correct ball it was 
rewarded, and each attack of the incorrect 
object was punished. The training of a 
demonstrator was complete when the ani- 
mal made no mistakes in five trials. 

Two groups (red balls and white balls) of 
demonstrators were trained. For the red 
group, the red ball was considered to be the 
correct choice. Its selection was rewarded 
with a small piece of fish attached to the 
side of the ball that was not visible to the 
animal. Selection of the white ball was 
punished by an electric shock (9). For the 
second group of octopuses the conditions 
were reversed. For the octopuses (n = 30) 
conditioned to choose the red ball, full 
training was reached at 16.83 + 1.35 trials 
(mean + standard error of the mean). The 
white group (n = 14) was trained after 
21.50 + 1.46 trials. Full training was 
reached at a significantly different number 
of trials for the two groups (Student t test = 
2.11, df = 42, P < 0.05) (12). 

During the observational phase, an un- 
trained Octopus vulgaris housed in the tank 
adjacent to its demonstrator observed four 
trials during which the demonstrator at- 
tacked the ball it had been taught to attack 
(Fig. 1). During this phase no errors were 
detected in the demonstrator groups (Fig. 2, 
A and C), even though they were no longer 
rewarded for making the correct response. 

From the analysis of videorecordings we 
noted that observer octopuses increased 
their attention (13) during each of the four 
trials. In particular, we noted that the 
observers followed the action patterns of 
their demonstrators with movements of 
the head and eyes. When these move- 
ments during observational trials were 
compared with those seen during intertrial 
times, we detected a significative increase 
in their number [Wilcoxon matched-pairs 
test: z = 5.23, P < 0.01, n = (44 
observers minus 2 null differences) = 42]. 
The observers also spent more time out- 
side of their homes and displayed other 
behavioral patterns that have been recog- 
nized for Octopus vulgaris when in the 
presence of a conspecific (8, 13). 

For the testing phase, observer octopus- 
es were tested (14) with a session of five 
trials of simultaneous presentation of both 
white and red balls randomly positioned. 
No reward or punishment was given at this 
time for any choice made. The Octopus 
vulgaris (n = 30) that observed demonstra- 
tors attacking the red ball chose the red 
ball significantly more often than they did 
the white ball [129 red, 13 white in 150 
trials; x2 = 90, P < 0.01 (Fig. 2B)J. 
Animals (n = 14) that observed demonstra- 
tors of the white group chose the white ball 
[7 red, 49 white in 70 trials; x2 = 28, P < 
0.01 (Fig. 2D)J. 

During the testing phase, the red and 
white observers made 14 and 30% of cumu- 
lative errors, respectively. However, for 
both groups of observers if one considers 
only the number of attacks to the wrong 
ball, errors were -9%. Failure to attack 

S0 

Fig. 1. Schematic of the experimental appara- 
tus and protocol. An Octopus vulgaris is shown 
(right side of the figure) attacking a ball (the red 
one) and acting as a demonstrator for the other 
animal (observer, left side) that is standing 
outside of its home and watching its conspe- 
cific during the whole session through a trans- 
parent wall. Each tank had an independent 
supply of running water. Octopuses were al- 
lowed to visually interact for 2 hours before the 
start of the observational phase. Mean duration 
of the trials, which depended on the demon- 
strator's performances, was 40 s, and intertrial 
intervals were fixed at 5 min. 
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Table 1. Learning retention by observers. Mean ? standard deviation from five experiments with 
red and white groups of observers and untrained octopuses (12) at 1 and 5 days after the 
observational phase. The preference for red in untrained animals during free choice experiments 
was significant at day 5. 

Day 1 Day 5 
n* 

Red White Red White 

Observers (red) 16 4.31 ? 1.01 0.31 ? 0.60 3.88 ? 1.55 0.50 ? 0.63 
(4.30)t (0.43) (4.30) (0.43) 

Observers (white) 10 0.40 ? 0.52 4.10 ? 0.58 0.50 ? 0.53 3.70 ? 0.82 
(0.50) (3.50) (0.50) (3.50) 

Untrained 18 2.11 ? 1.23 1.94 ? 0.94 3.22 ? 1.31 0.89 ? 0.96 

*n, number of animals tested. tThe values from the testing phase are shown in parentheses. 

A ~~~B 
100- 

0- 
R W NA R W NA 

c ~~~D sJ100 C 

R W NA R W NA 
Fig. 2. Choices expressed as percent of the 
total choices made by demonstrators during 
the observational phase of the experiment and 
those of observers during the testing phase. (A) 
Red group demonstrators (n = 30); (B) red 
group observers (n = 30); (C) white group 
demonstrators (n = 14); and (D) white group 
observers (n = 14). R, red; W, white; NA, no 
attack. 

(Fig. 2, B and D: NA) did not correlate 
with choices in preceding trials. The ran- 
domness of this event does not favor the 
lack of discrimination between objects or 
the failure of learning, but it may be related 
to a lack of reward after each trial. 

These results suggest that untrained 
Octopus vulgaris can learn a task by observ- 
ing, for a short period of time (four trials), 
the behavior of a conspecific. Observa- 
tional learning was significantly faster 
than the learning of the demonstrators 
trained with classical conditioning tech- 
niques (-16 trials for red and -21 for 
white demonstrators). After four condi- 
tioning trials success rates of 51% for red 
and 51% for white group were attained, 
whereas four trials of observation with 
demonstrators led to corresponding suc- 
cess rates of 86 and 70% (15). 

Learning appeared stable when its re- 
tention by some randomly selected observ- 
ers (n = 16 red group; n = 10 white group) 

was tested on five consecutive days, with a 
session of five trials a day. The procedure 
used was the same as for the testing phase 
of the experiment. There was no statisti- 
cally significant difference between the 
percentages of correct responses of the 
octopuses immediately after the observa- 
tional phase and 5 days after its end (red, 
81% versus 81%; white, 70% versus 81%) 
(Table 1). This indicated that the level of 
learning of the discrimination task that 
Octopus vulgaris observed is stable over 
time, any innate individual preference 
(12) being suppressed by the learned one. 
The significant increase in the preference 
for red by the untrained octopuses (from 
42 to 64%) may indicate a preference for 
some property of the red ball, which if true 
may partly account for the larger error 
rates in the white observer group during 
the testing phase of the experiment. The 
rapid acquisition and the stability indicate 
that observational learning in Octopus vul- 
garis is a powerful mechanism of learning, 
compared both to conditioning (training 
of demonstrators) and trial-and-error 
learning (4). 

Copying of a model (16) is reported for 
humans (17) and vertebrates (18), and it 
has been considered preliminary to concep- 
tual thought; in this sense it appears related 
to the cognitive abilities of the animal 
learning system (19). 

The evidence presented in support of 
observational learning in Octopus vulgaris is 
particularly interesting because of the high- 
ly developed invertebrate brain of this spe- 
cies, with its intriguing analogies with the 
neural organization of vertebrate brains (2, 
20). Questions still arise about the function 
of such learning in the natural environment 
of octopuses. 
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