Arch 481:
 3D Modeling + Rendering

Handout

University of Wastington
oepartment of Archtecture
${ }_{30}$ Modeling and Renchering 481
ARCH 481: 3d Modeling and Rendering

${ }_{\text {When: }}^{\substack{\text { Cradits }}}$		Where: Prerequisite:	Digital Commons (GLDOOFF Arch 380 (or permission)
Instructor: E-mail to:	rian Johnson brj@u.washington.edu	GSA: E-mail to:	Nanching Ta lai@u.washington.edu
Office: Office Hours Office phon	$\begin{aligned} & \text { By appointment } \\ & 206.543 .2132 \end{aligned}$	Office: Office Hours: Office phone:	$\begin{aligned} & \text { varies } \\ & \text { see web pages } \\ & \text { n/a } \end{aligned}$

 sind
peoples

Rober Syowich SIGRAPH 198

A joumey of a thousand miles must bogin with a singio. stop Loozzu
Introduction

ARCH 481: 3D Mooeling and Renoering Autumn quarter, 2014
Lecture \& Project Schedule

Dates	LECTURE TOPIC/Lab Suject	Due ${ }^{+}$	Weekly topic cluster
Th 925	\#1 Concepts		
Tи 9з3	Concere Mooels	\#0	
Th 102	\#2 Lights + Shading		
Tu 107	Loome Loitr R Renernc Smams	\#1	Ine removal by backs.sing and depept soting.
+109	\#3 Goometric Detail		
Tu 1014	Detals and entourag	+2	l.
Th 1016	m4 Surace Detail		Faux somemery: Smoating (ICuu
Tu 1021	Adome z Conrroume texures.	\#3	mand
Th 10123	\#5 Terain [bri@ acalia]		
Tu 1028		$\# 4$	aseme
Th 1030	\#6 Complex curvatue		
Tu $11 / 4$	NURBS, Splines, etc.	\#5	-
Th 1116	\#7 Photoralism		
TU 11711	(Veteans Dar Hooloay		phasi
Th 11173	Yytacing, Radiosity, \& ime.	\#6	\pm
	\#8 Motion		Solememen
Th 1120	meras 8 Moolisw woton		
Tu 11125	${ }^{\text {m9 }}$ Post.production	47	
Th 1127	(Tнankssumg Holoary		
Tu 12/2	ost Provectow	\#8	
Th 1224	Cours Wrap-up, Revevew, Evaluation		Review of couse materail. Time tor feectack.
Tu 127	(FNWLLS WeEk- wo class this oay)		
Tn 1211	Final Show \& Tell 4:30:6:00	*9	Presenationo twanpeied (Ex)
			Atendanee is specected.

$+$
Assignmens are due at he START OF CLASS ond

Online

Arch 481 :
3D Modeling and Rendering

Exercise Workbook

Autumn 2014
oingean shonon

Syllabus

ARCH 481: 3d Modeling and Rendering

When: Credits	Turth, 1,30 to 3. Graded	Where: Prerequisite:	Digital Commons (GLDOOTF) Agh 380 (or Arch 380 (or permission)
Instructor: E-mail to:	Brian Johnson brj@u.washington.edu	GSA: E-mail to	Nanching Ta lai@u.washington.edu
Office: Office Hours Office phone		Office: Office Hours: Office phone: Office pho	$\begin{aligned} & \text { varies } \\ & \text { see web pages } \\ & \text { n/a } \end{aligned}$

Lao-Izu was a Ch
Introduction

${ }^{26 . \text { IX. } 06}$

Course description
Contact information
Grading
Resources
Expectations

Schedule

Lecture \& Project Schedule

Exercise Name
 Weekly topics
 Due Dates

Dates	LECTURE TOPIC/Lab Subject	Due ${ }^{\dagger}$	Weekly topiceluster
Th 9/5	\#1 Conceps		3D modeling data and operations; Solids (geometry topology); Mouse input. "Cameras:" projections from 3 to 2 D , saving 2 D images.
Tu 9/80	Concept lodels	\#0	
Th 10/2	\#2--igits + Shading		Apolean operations. Lights, Shading, Shadows. Hidden line ren Ihy 'hack-siding' and denth corting
Tu 10/7	Adding Light \& Rendering Shadows	\#1	
Th 10/9	\#3 Geometric Detail		From 2D to 3D: extrusion, revolution, sweeps \& lofting. idden-line removal by z-buffering. Symbols: instances v. copies
Tu 10/14	Details and entourage	H2	
Th 10/16	\#4 Surface Detail		Faux geometry: Smoothing (Gouraud/Phong), Texture maps (surface, solid \& procedural textures, color, transparency \& bump maps).
Tu 10/21	Adding \& Controlling Textures.	\#3	
Th 10/23	\#5 Terrain [brj @ acadia]		Landform modeling: contours, meshes or TINs. Building a site. Abstraction v. "reality". (fractals, meshes, randomness and irregularity)
Tu 10/28	modeling Terrain	\#4	
Th 10/30	\#6 Complex curvature		Principles and introduction to modeling of curved objects beyond surfaces of revolution and sweeps. (NURBS, patches, handles, nodes)
Tu 11/4	NURBS, Splines, etc.	\#5	
Th 11/6	\#7 Photorealism		Rendering refraction, diffuse reflection, soft shadows, fog, etc.-. (global illumination, ray tracing, radiosity, physically-based rendering)
Tu 11/11	(VETERANS Day Holiday)		
Th 11/13	Raytracing, Radiosity, \& time....	\#6	Animation basics. ('tweening, interpolation, paths, previews, codecs) Playback technology bottlenecks, solutions and work-arounds.
Tu 11/18	\#8 Motion		
Th 11/20	CAMERAS \& MODELS IN MOTION		Designing \& assembling presentations using video (codecs, transitions, intellectual property rights, audio)
Tu 11/25	\#9 Post-production	\#7	

Workbook

Arch 481 :
3D Modeling and Rendering

Exercise Workbook
Autumn 2014
© by Brian Johnson
bri@u. washingtonedu
bri@u.washington.edu

Exercises by Name \& \#
Learning Goals
Production Goals
Instructions
Hints
Write-up Questions
Extra-credit opportunities

Web pages

Course web site

Copies of Handouts

Reading
Assignments
Tapestry Reader
Gallery of work
Misc. resources and links

Case Studies

Tapestry Reader

Hierarchical by topic

Graphic/Animated

Vocabulary

"How To" pages

Turning in completed work

Web-based
Linked from Course
"Admin" area

Exercises "open" and "close" by dates.

An experiment--give feedback

Don't forget hardcopy of Write-up questions!

PhpTA (online grade report)

Uses "pubcookie" (i.e. your UWNetID name and password).

Is approximate--i.e. not the final record-(doesn't show late penalty deductions)

Beginnings...

Destination: unknown

Path: uneven
Preparation: some

Motivation: high
When: now!

```
The Course on a Page

\section*{Lighting}
-Models

Viewscreen
-Sampling
-Color systems
-Antialiasing


Camera
-Projection systems
-Specification

Modeling
-mplicit
Parametric Heirarchical

Moving Around
-Coordinate systems Translation -Rotation Scale

Storage

Scene Files
-Storage -File formats

Shading
-BRDF
-Shading models
-Shading images
-Textures
-Shadows \& reflections

\section*{storytelling}

Images have meaning ("worth 1000 words")
Rendering is turning data into image.
Data becomes image \(\rightarrow\) Data is subjective.
You are always telling a story.
Think about the story you will tell.
Control the story you tell.

\section*{photo real}


\section*{Non-photo-real}


\section*{hyper real}


\section*{visual}

\section*{conceptual}


\section*{relationships}


\section*{Key Concepts Review}


\author{
Photoshop \\ pixel \\ .JPG \\ painting
}
lossy fax

Vector v. Raster

\section*{Primitives \& Attributes: Instances}
primitive
"cylinder"


Position
Size
Color
Diameter
Orientation

Instance variations



Primitives vs. pseudo-primitives

\section*{Attributes of primitives}
- Varies by program
- Varies by primitive
- In Rhino ...
- Object Type
- Name
- Layer
- Name
- Visibility
- Color
- Line-color
- (more)
- Color
- Visibility
- Render mesh setting
- Shadow casting/receiving
- Texture/Material
- Texture Mapping
- Decals
- Control points
- Degree
- Coordinates (points)
- Analytic Properties
- Planarity
- Area \& volume
- Orientation/direction
- NOT (e.g. plane)

\section*{Coordinate Systems}


\section*{The Pointing Problem}

Mouse
Model
2D

\section*{The Pointing Problem}

\section*{Solutions:}

Keyboard coordinates Construction planes Reference existing data Multi-view input (multiple clicks - rare)

The influence extends to many 3D modeling operations that depend on 2D input (extrusion, revolution, sweeps, etc.)

\section*{Mouse is 2D -> Model is 2D?}

2D drawings are ambiguous
- 2D views often combine data from multiple 3D positions
Making 3D Model with 2D points is hard
- Simply "clicking points" (raw pointing) places points on a plane
- Ortho, (grid) snap, etc. constrain point locations.

\section*{Find the right view}

Multi-views
- Find the planar "control curve"
- Pick or construct a cplane for the curve

3D views
- "Disambiguate" snaps

Named views
- Camera info, not image, so re-rendering works

\section*{3D: right view, right osnap}

Right view (no ambiguity)
- Plan views have problems

Without osnap (at right)
- Stacked? Or not?

Osnap takes precedence
- Using osnaps, placing objects in perspective is usually quick and easy


\section*{Avoid "Clicks" + "Osnaps"}
- Mixing Raw \& Osnap points may be a bad idea
- Raw pointing will reference points on a construction plane (cplane)
- Using Osnaps you can make twisted shapes
- Osnaps in ortho views can be ambiguous

\section*{To the rescue!}
- Rhino has "Project" (to cplane) option
- Rhino has "Planar" (temp cplane at first pt) option

\section*{Derivative Geometry}

Arch 481

\section*{3D shapes, 2D "sections"}
- Extrusion
- Section \& displacement
- Revolution
- Section, Axis \& angle
- Sweep (1 rail or
- Section \& path
- Lofting
- Multiple sections (aka contours!)

\section*{The Camera Metaphor}

In 3D programs the data is separate from the image. You produce images by
"rendering" the data. The relationship of model data to rendered image is governed, in part, by the digital "camera" and its attributes, just as in the real world.

\section*{"Pinhole" Camera?}

Most synthetic images mimic a pinhole camera:
- Perfect focus
- Infinite depth of field
- No spherical aberration
- No motion blur
- No lens-flare

\section*{Telephoto \(v\). wide-angle lens}

The mathematics of "projection":
- Projection refers to "squashing" 3D data to 2D
- In the computer, it's done with matrix math
- By varying the terms in the matrix, everything from a wide-angle view to a telephoto view can be generated. Normal "perspective" and "parallel" views are just variations.
- Usually, points are projected, and connected with straight lines in the image (no "fish eye")

\section*{Camera "View Vector"}

A line from the camera to the center of view

\section*{Station Point}
- Location ( \(x, y, z\) ) in space of the camera
- "z-up" direction

Focal Point
- Location ( \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) ) of the "center of view"

Cone of Vision
- Angle of view frustrum (perspective)
- Sets zoom/scale of window (ortho)

\section*{1. Traditional Views?}


\section*{Traditional Views?}
"One Point"
- VV perpendicular to building face
"Two Point"
- VV parallel to ground
"Three Point"
- VV unconstrained

Elevation, etc.
- One-point, with parallel projection

\title{
Symbols / Blocks
}

Arch 481

\section*{Most 3D assemblies repeat parts}

Avoid copy \& paste!

\section*{Best Practice}
- Construct just one!
- Duplicate through instancing
- Separate model?
- Named construction planes?

\section*{Different Kinds of Symbols}
- Full Size
- Manufactured items (cars, water-closets)
- Limited size variation
- Unit Size
- Variable use size (trees)
- Insertion scale sets size
- Insertion Point
- Placement handle, might be snapped
- Can simplify placement

\section*{Symbols: Copies v. Instances}

Copies (copy \& paste, "copy", etc.)
- Repeated geometry = repeated data
- Manual change propagation Instances (blocks, symbols, etc.)
- Name subdrawings
- Repeated geometry = repeated name references
- Automatic change propagation

\section*{Symbols: Attributes}

Original geometry attributes
- Location relative to global origin
- Layer, color, linestyle ("object attributes")

Instance attributes
- Each instance is an object in it's own right Predicting appearance ... can be a challenge
- Interaction of original attributes \& instance attributes

\section*{Symbols: Instance Attributes}


\section*{Blocks vs. Files}
- Existing geometry within a file may be made into a block and inserted (insert).
- An existing model (.3dm) file may be inserted, creating a block and instance (insertFile).
- Internally defined blocks may be redefined (block), and are saved with the current file.
- External files may optionally be "linked" and automatically "re-inserted" at times, facilitating change propagation.

\section*{Some cautions}
- Inserted file: origin becomes insertion pt.
- Editing = place, explode, edit, re-define
- Mark insertion-point before re-defining or things will move!
- Redefining the block does not change instance references to the block.
- Blocks defined in the inserted file become blocks in the receiving file (libraries?).

\title{
2: The Graphics Pipeline
}

Arch 481

\section*{Graphics Application Paradigm}


\section*{Eye-space transform}


Model coordinates transformed so eye is at origin, with "image-x-axis" to the right and "image-y-axis" up (sometimes called \(\mathrm{u}, \mathrm{v})\).

\section*{Clipping}


Projection flattens ALL of 3D space onto the image plane, whether data is behind you (4) or off to the side (5). Clipping reduces it ...

\section*{Clipping}


Regular clipping will remove items 4 and 5 and trim 2. "Hither and Yon" clipping, if available, will not draw items 6 or 3 either.

\section*{Hidden Surfaces}

This image uses
"atmospheric perspective" (far lines are gray, near lines are black) to help viewers understand the model.


The default is for EVERYTHING to be visible (wireframe). "Hidden" is a decision the program must make.

\section*{Hidden Surfaces}

Multiple strategies have been developed to address this problem. Different renderers use different schemes or combinations of:
- Culling
- Depth sorting
- Z-buffer

\section*{Hidden Surface Strategies}

Thinking in MODEL SPACE
- We see the surfaces that face us
- Discard surfaces facing away (culling)
- Fails with one-sided sheets
- Fails in a concave world
- We see only the surfaces that are closest to us.
- Relies on the "destructive write" computer displays
- Sort surfaces by depth in scene (depth sorting)
- There is a time-cost when sorting complex scenes
- Fails when surfaces intersect or overlap
- Other: scan-line, etc.

\section*{Hidden Surface Strategies}

Thinking in IMAGE SPACE - "Z-buffering"
- Answer the "closest surface" question on a per pixel basis?
- The graphics pipeline "paints" polygons to the screen one at a time as raster data.
- In eye space the " \(z\)-coordinate" is depth into the scene.
- Knowing the depth at the corners allows us to interpolate depth at every pixel.
- Storing the depth at each pixel allows us to decide what is visible.

\section*{\#1: "Culling" Hidden Surfaces}

\section*{Surfaces have orientation (surface normals)}
- Normal: a vector perpendicular to something
- You won't see what doesn't face you


All faces and normals


Faces facing the Camera


Finished Image

\section*{What can go wrong?}

\section*{Orientation is computed from edges:}

- first point


Polygons can get twisted or warped


\section*{What else can go wrong?}

Polygons can both face you and overlap:



\section*{\#2: "Depth Sorting" Surfaces}

\section*{Eye space}
- first step in graphics pipeline
- "+x" to the right, "+y" is up
- "+z" is distance away from the eye

Raster screens support "destructive write"
- New stuff, drawn over old stuff, completely replaces it.
\(\rightarrow\) Draw from furthest away to nearest!

\section*{\#2: "Depth Sorting" Surfaces}

Draw the most distant face first, based on view point, then the closer ones.


\section*{"Depth Sorting" errors...}

Because it works with whole polygons...


Intersecting polygons like this
(top view)

... that should look like this ... (axo view)


\section*{... will look like this instead!}

\section*{\#3: Z-buffering}

Works with pixels, not polygons ...
... works in "screen space" not "model space"
Screen space is NOT infinite (yay!)
Raster screen determines needed accuracy Most uses will be raster.

\section*{Hidden Surfaces: \#3 Z-buffering}
```

