
Chapter 14

Spline Curves

A spline curve is a mathematical representation for which it is easy to build
an interface that will allow a user to design and control the shape of complex
curves and surfaces. The general approach is that the user enters a sequence
of points, and a curve is constructed whose shape closely follows this sequence.
The points are called control points. A curve that actually passes through each
control point is called an interpolating curve; a curve that passes near to the
control points but not necessarily through them is called an approximating curve.

interpolating curve approximating curve

the points are called
control points

Once we establish this interface, then to change the shape of the curve we just
move the control points.

-1 0 1
x

1

2

y
The easiest example to help us to understand how this
works is to examine a curve that is like the graph of a
function, like y = x2. This is a special case of a polyno-
mial function.

87

88 CHAPTER 14. SPLINE CURVES

14.1 Polynomial curves

Polynomials have the general form:

y = a+ bx+ cx2 + dx3 + . . .

The degree of a polynomial corresponds with the highest coefficient that is non-
zero. For example if c is non-zero but coefficients d and higher are all zero,
the polynomial is of degree 2. The shapes that polynomials can make are as
follows:

degree 0: Constant, only a is non-zero.

Example: y = 3
-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

-0.8

0.8

1.6

2.4

3.2

4

4.8

A constant, uniquely defined by one point.

degree 1: Linear, b is highest non-zero coefficient.

Example: y = 1 + 2x
-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

-0.8

0.8

1.6

2.4

3.2

4

4.8

A line, uniquely defined by two points.

degree 2: Quadratic, c is highest non-zero coefficient.

Example: y = 1− 2x+ x2

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

-0.8

0.8

1.6

2.4

3.2

4

4.8

A parabola, uniquely defined by three points.

degree 3: Cubic, d is highest non-zero coefficient.

Example: y = −1− 7/2x+ 3/2x3
-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

-4

-3.2

-2.4

-1.6

-0.8

0.8

1.6

A cubic curve (which can have an inflection, at x = 0 in this example),
uniquely defined by four points.

The degree three polynomial – known as a cubic polynomial – is the one that
is most typically chosen for constructing smooth curves in computer graphics.
It is used because

1. it is the lowest degree polynomial that can support an inflection – so we
can make interesting curves, and

2. it is very well behaved numerically – that means that the curves will

usually be smooth like this: and not jumpy like this: .

14.1. POLYNOMIAL CURVES 89

So, now we can write a program that constructs cubic curves. The user enters
four control points, and the program solves for the four coefficients a, b, c and d
which cause the polynomial to pass through the four control points. Below, we
work through a specific example.

Typically the interface would allow the user to enter
control points by clicking them in with the mouse.
For example, say the user has entered control points
(−1, 2), (0, 0), (1,−2), (2, 0) as indicated by the dots in
the figure to the left.

Then, the computer solves for the coefficients a, b, c, d and might draw the curve
shown going through the control points, using a loop something like this:

glBegin(GL LINE STRIP);

for(x = -3; x <= 3; x += 0.25)

glVertex2f(x, a + b * x + c * x * x + d * x * x * x);

glEnd();

Note that the computer is not really drawing the curve. Actually, all it is doing
is drawing straight line segments through a sampling of points that lie on the
curve. If the sampling is fine enough, the curve will appear to the user as a
continuous smooth curve.

The solution for a, b, c, d is obtained by simultaneously solving the 4 linear
equations below, that are obtained by the constraint that the curve must pass
through the 4 points:

general form: a+ bx+ cx2 + dx3 = y

point (−1, 2): a− b+ c− d = 2

point (0, 0): a = 0

point (1,−2): a+ b+ c+ d = −2

point (2, 0): a+ 2b+ 4c = 8d = 0

This can be written in matrix form

Ma = y,

90 CHAPTER 14. SPLINE CURVES

or (one row for each equation)
1 −1 1 −1
1 0 0 0
1 1 1 1
1 2 4 8

a
b
c
d

 =

2
0
−2
0

The solution is

a = M−1y,

which is hard to do on paper but easy to do on the computer using matrix and
vector routines.

For example, using the code I have provided, you could write:

Vector a(4), y(4);

Matrix M(4, 4);

y[0] = 2; y[1] = 0; y[2] = -2; y[3] = 0;

// fill in all rows of M

M[0][0] = 1; M[0][1] = -1; M[0][2] = 1; M[0][3] = -1;

// etc. to fill all 4 rows

a = M.inv() * y;

After this computation, a[0] contains the value of a, a[1] of b, a[2] of c and
a[3] of d. For this example the correct values are a = 0, b = −2 2

3 , c = 0, and
d = 2

3 .

14.2 Piecewise polynomial curves

In the previous section, we saw how four control points can define a cubic
polynomial curve, allowing the solution of four linear equations for the four
coefficients of the curve. Here we will see how more complex curves can be
made using two new ideas:

1. construction of piecewise polynomial curves,

2. parameterization of the curve.

Suppose we wanted to make the curve shown to the right.
We know that a single cubic curve can only have one in-
flection point, but this curve has three, marked with
O’s. We could make this curve by entering extra control
points and using a 5th degree polynomial, with six coef-
ficients, but polynomials with degree higher than three
tend to be very sensitive to the positions of the control
points and thus do not always make smooth shapes.

14.2. PIECEWISE POLYNOMIAL CURVES 91

The usual solution to this problem in computer graphics and computer aided
design is to construct a complex curve, with a high number of inflection points,
by piecing together several cubic curves:

+

Here is one way that this can be done. Let each pair of control points represent
one segment of the curve. Each curve segment is a cubic polynomial with its
own coefficients:

x0 x9x8x7x6x5x4x3x2x1

f0(x)
f8(x)

f1(x)

(x5,y5)

(x6,y6)
y

x

In this example, the ten control points have ascending values for the x coordi-
nate, and are numbered with indices 0 through 9. Between each control point
pair is a function, which is numbered identically to the index of its leftmost
point. In general, fi(x) = ai + bix+ cix

2 + dix
3 is the function representing the

curve between control points i and i+ 1.

Because each curve segment is represented by a cubic polynomial function, we
have to solve for four coefficients for each segment. In this example we have
4× 9 = 36 coefficients to solve for. How shall we do this?

92 CHAPTER 14. SPLINE CURVES

Here is one way:

1. We require that each curve segment pass through its control points. Thus,
fi(xi) = yi, and fi(xi+1) = yi+1. This enforces C0 continuity – that is,
where the curves join they meet each other.

Note that for each curve segment this gives us two linear equations: ai +
bixi + cix

2
i + dix

3
i = yi, and ai + bixi+1 + cix

2
i+1 + dix

3
i+1 = yi+1. But to

solve for all four coefficients we need two more equations for each segment.

2. We require that the curve segments have the same slope where they join
together. Thus, f ′i(xi+1) = f ′i+1(xi+1). This enforces C1 continuity –
that is that slopes match where the curves join.

Note that: fi(x) = ai+bix+cix
2+dix

3, so that f ′i(x) = bi+2cix+3dix
2.

And C1 continuity gives us one more linear equation for each segment
bi + 2cixi+1 + 3dix

2
i+1 = bi+1 + 2ci+1xi+1 + 3di+1x

2
i+1 or bi + 2cixi+1 +

3dix
2
i+1 − bi+1 − 2ci+1xi+1 − 3di+1x

2
i+1 = 0.

3. To get the fourth equation we require that the curve segments have the
same curvature where they join together. Thus, f ′′i (xi+1) = f ′′i+1(xi+1).

This enforces C2 continuity – that curvatures match at the join.

Now: f ′′i(x) = 2ci + 6dix

And C2 continuity gives us the additional linear equation that we need
2ci +6dixi+1 = 2ci+1 +6di+1xi+1 or 2ci +6dixi+1−2ci+1−6di+1xi+1 = 0

4. Now we are almost done, but you should note that at the left end of the
curve we are missing the C1 and C2 equations since there is no segment
on the left. So, we are missing two equations needed to solve the entire
system. We can get these by having the user supply the slopes at the two
ends. Let us call these slopes s0 and sn.

This gives f ′0(x0) = s0, and f ′n−1(xn) = sn so that b0 +c0x0 +2d0x
2
0 = s0,

and bn−1 + cn−1xn + 2dn−1x
2
n = sn.

14.2. PIECEWISE POLYNOMIAL CURVES 93

As we did with the case of a single cubic spline, we have a set of linear equations
to solve for a set of unknown coefficients. Once we have the coefficients we can
draw the curve a segment at a time. Again the equation to solve is

Ma = y =⇒ a = M−1y,

where each row of the matrix M is taken from the left-hand side of the linear
equations, the vector a is the set of coefficients to solve for, and the vector y is
the set of known right-hand values for each equation.

Following is a worked example with three segments:

Segment 0: f0(x)
Slope at 0: b0 = 2
Curve through (0, 1): a0 = 1
Curve through (2, 2): a0 + 2b0 + 4c0 + 8d0 = 2
Slopes match at join with f1: b0 + 4c0 + 12d0 − b1 − 4c1 − 12d1 = 0
Curvatures match at join with f1: 2c0 + 12d0 − 2c1 − 12d1 = 0

Segment 1: f1(x)
Curve through (2, 2): a1 + 2b1 + 4c1 + 8d1 = 2
Curve through (5, 0): a1 + 5b1 + 25c1 + 125d1 = 0
Slopes match at join with f2: b1 + 10c1 + 75d1 − b2 − 10c2 − 75d2 = 0
Curvatures match at join with f2: 2c1 + 30d1 − 2c2 − 30d2 = 0

Segment 2: f2(x)
Curve through (5, 0): a2 + 5b2 + 25c2 + 125d2 = 0
Curve through (8, 0): a2 + 8b2 + 64c2 + 512d2 = 0
Slope at 8: b2 + 16c2 + 192d2 = 1

Ma = y, or

94 CHAPTER 14. SPLINE CURVES

0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 2 4 8 0 0 0 0 0 0 0 0
0 1 4 12 0 −1 −4 −12 0 0 0 0
0 0 2 12 0 0 −2 −12 0 0 0 0
0 0 0 0 1 2 4 8 0 0 0 0
0 0 0 0 1 5 25 125 0 0 0 0
0 0 0 0 0 1 10 75 0 −1 −10 −75
0 0 0 0 0 0 2 30 0 0 −2 −30
0 0 0 0 0 0 0 0 1 5 25 125
0 0 0 0 0 0 0 0 1 8 64 512
0 0 0 0 0 0 0 0 0 1 8 128

a0
b0
c0
d0
a1
b1
c1
d1
a2
b2
c2
d2

=

2
1
2
0
0
2
0
0
0
0
0
1

,

so

a = M−1y,

Again, this is hard to solve by hand but easy on the computer.

14.3 Curve parameterization

So far we have learned how a sequence of control points can define a piecewise
polynomial curve, using cubic functions to define curve segments between con-
trol points and enforcing various levels of continuity where segments join. In
particular, we employed

• C0 continuity, meaning that the two segments match values at the join.

• C1 continuity, meaning that they match slopes at the join.

• C2 continuity, meaning that they match curvatures at the join.

We were able to determine coefficients for the curve segments via a set of linear
equations

Ma = y =⇒ a = M−1y,

where a is the vector of all coefficients, y is the vector of constants on the
right-hand side of the linear equations, and M is a matrix encoding the C0, C1

and C2 conditions.

This approach can be modified to specify each curve segment in parametric
form, as indicated in the figure below.

14.3. CURVE PARAMETERIZATION 95

In the example, both curves are identical, however, the equations describing
them will be different. In the parametric form on the right, we have defined
parameters t0, t1 and t2 that vary between 0 and 1 as we step along the x axis
between control points. We could write equations:

t0 = x/2, with
dt0
dx

= 1/2

t1 = (x− 2)/3, with
dt1
dx

= 1/3

t2 = (x− 5)/3, with
dt2
dx

= 1/3

relating the t’s to the original x coordinate. The derivatives indicate how quickly
each t varies as we move in the x direction.

Now we specify each curve segment by a parametric cubic curve

fi(ti) = ai + biti + cit
2
i + dit

3
i

At the left side of segment i, ti = 0 and at the right ti = 1, so C0 continuity is
simply

fi(0) = ai = yi

fi(1) = ai + bi + ci + di = yi+1

Notice, that in this form the ai coefficients are simply the y coordinates of the
ith control points, and do not have to be solved for.

For C1 continuity we differentiate once with respect to x using the chain rule:

Dxfi =
∂fi
∂ti

dti
dx

= f
′

i

1

xi+1 − xi
,

and for C2 continuity we differentiate twice:

D2
xfi =

(
∂f
′

i

∂ti

dti
dx

)
dti
dx

= f
′′

i

1

(xi+1 − xi)2
.

96 CHAPTER 14. SPLINE CURVES

It is important that these quantities be calculated in spatial (i.e. x), not in
parametric coordinates, since we want the curves to join smoothly in space, not
with respect to our arbitrary parameterization.

We force fi and fi+1 to match slopes by:

(Dxfi)(1) = (Dxfi+1)(0),

or

(bi + 2ci + 3di)
1

xi+1 − xi
= bi+1

1

xi+2 − xi+1
, or finally

bi + 2ci + 3di −
xi+1 − xi
xi+2 − xi+1

bi+1 = 0

We force fi and fi+1 to match curvatures by:

(D2
xfi)(1) = (D2fi+1)(0)

or

(2ci + 6di)
1

(xi+1 − xi)2
= 2ci+1

1

(xi+2 − xi+1)2
, or finally

2ci + 6di − 2
(xi+1 − xi)2

(xi+2 − xi+1)2
ci+1 = 0.

Remember that we provided two extra equations by specifying slopes at the 2
endpoints s0 and sn. So this gives

f
′

0(0)

x1 − x0
= s0,

f
′

n−1(1)

xn − xn−1
= sn,

or

b0 = (x1 − x0)s0,

and

bn−1 + 2cn−1 + 3dn−1 = (xn − xn−1)sn.

Looking back at our previous example, which we did without parameterization,
we can rewrite all of our equations, and the final linear system that we have to
solve. On big advantage of this approach is that we reduce one row and one
column from the matrix for each control point, since we already know the values
of all of the a coefficients.

14.4. SPACE CURVES 97

Segment 0: f0(t0)
Slope at 0: b0 = (2− 0)2 = 4
Curve through (0, 1): a0 = 1
Curve through (2, 2): a0 + b0 + c0 + d0 = 2orb0 + c0 + d0 = 2− 1 = 1
Slopes match: b0 + 2c0 + 3d0 − (2−0

5−2)b1 = 0

Curvatures match: 2c0 + 6d0 − 2(2
3)2c1 = 0

Segment 1: f1(t1)
Curve through (2, 2): a1 = 2
Curve through (5, 0): b1 + c1 + d1 = 0− 2 = −2
Slopes match: b1 + 2c1 + 3d1 − (8−5

5−2)b2 = 0

Curvatures match: 2c1 + 6d1 − 2c2 = 0

Segment 2: f2(t2)
Curve through (5, 0): a2 = 0
Curve through (8, 0): b2 + c2 + d2 = 0− 0 = 0
Slope at 8: b2 + 2c2 + 3d2 = (8− 5)2 = 6

Ma = y, or

1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 2 3 − 2

3 0 0 0 0 0
0 2 6 0 − 8

9 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 2 3 −1 0 0
0 0 0 0 2 6 0 −2 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 2 3

b0
c0
d0
b1
c1
d1
b2
c2
d2

=

4
1
0
0
−2

0
0
0
6

,

so

a = M−1y

Once you have understood the notion of piecewise parameterization, the rest
follows in a straightforward way.

14.4 Space curves

We now know how to make arbitrary functions from a set of control points and
piecewise cubic curves, and we know how to use parameters to simplify their
construction. Now we will extend these ideas to arbitrary curves in two and
three dimensional space.

98 CHAPTER 14. SPLINE CURVES

For the earlier examples, we used t for a parameter, but to distinguish the fact
that we will now be looking at space curves, we will follow the usual notation
in the literature and use the letter u.

Suppose we have two functions

x = u2 + 1,

and
y = −2u2 + u+ 3.

As u varies, both x and y vary. We can make a table and we can plot the points.

We see that the curve is described in 2-dimensional space, and unlike the graph
of a function it can wrap back on itself. By picking appropriate functions x =
f(u) and y = g(u) we can describe whatever 2D shape we desire.

Suppose, for example, that we have a sequence of control points. Then between
each pair of points we can define two cubic curves as a function of a parameter
that varies from 0 to 1 between the control points and get a smooth curve

14.4. SPACE CURVES 99

between the points by applying C0, C1, C2 constraints, as indicated by the
example in the following figure.

In the figure, u1 is 0 at point 1 and 1 at point 2. A cubic curve is defined
between points 1 and 2 by

x = ax1 + bx1u1 + cx1u
2
1 + dx1u

3
1,

and

y = ay1 + by1u1 + cy1u
2
1 + dy1u

3
1.

We write two systems of linear equations for the x and y coordinates separately:
Mxax = x and Myay = y. Each system is solved following the same process we
used in the previous sections; the only major difference being that we solve two
linear systems instead of one.

Note that there are some differences in the details that have to be attended to.
First, instead of computing the single derivative dti

dx for each segment as we did

above, will now need the two derivatives ∂ui

∂x and ∂ui

∂y for the chain rule. If we
let each ui vary linearly from 0 to 1 for a segment between its control points
pi = (xi, yi) and pi+1 = (xi+1, yi+1) then

∂ui
∂x

=
1

xi+1 − xi
,

and

∂ui
∂y

=
1

yi+1 − yi
.

There is one more point to consider. Now that we
have full space curves, it is quite possible for a curve
to join back on itself to make a closed figure. If we
have this situation, and we enforce C0, C1 and C2

continuity where the curves join, then we have all of
the equations needed without requiring the user to
enter any slopes.

100 CHAPTER 14. SPLINE CURVES

14.5 Interpolation methods

In the notes we have worked through a method for building an interpolating
spline curve through a set of control points by using continuity C0, slope C1

and curvature C2 constraints, where spline segments join. This is the method for
computing natural cubic splines. It was very good for helping us to understand
the basic approach to constructing piecewise cubic splines, but it is not a very
good method for use in designing shapes. This is because the entire curve is
determined by one set of linear equations Ma = y. Therefore, moving just one
control point will affect the shape of the entire curve. You can understand that
if you are designing a shape, you would like to be able to have local control over
the portion of the shape you are working on, without worry that changes you
make in one place may affect distant parts of the shape.

For piecewise cubic interpolating curves, there are various ways of obtaining
local shape control. The most important of these are Hermite Splines, Catmull-
Rom Splines, and Cardinal Splines. These are explained quite well in a number
of computer graphics textbooks, but let us do a few examples to illustrate
these methods. Note, for each example we will be looking at only one segment
of a piecewise curve. For each of these methods, each segment is calculated
separately, so to get the entire curve the calculations must be repeated over all
control points.

14.5.1 Hermite cubic splines

pi and pi+1 are two successive control
points. For Hermite Splines the user must
provide a slope at each control point, in the
form of a vector ti, tangent to the curve at
control point i. Letting parameter ui vary
from 0 at pi to 1 at pi+1, we use continu-
ity C0 and slope C1 constraints at the two
control points.

In the example to the left, pi = (1, 1), and
pi+1 = (4, 3), thus dui

dx = 1−0
4−1 = 1

3 , and
dui

dy = 1−0
3−1 = 1

2 . The tangent vectors are

ti =

[
0

1.5

]
, and ti+1 =

[
1
−1

]
.

The tangent vectors t are input by the user as direction vectors of the form

14.5. INTERPOLATION METHODS 101[
4x
4y

]
, but we need slopes in parametric form, so we compute the scaled

tangents

Dpi =

[
4xdui

dx

4y dui

dy

]
=

[
0

(3
2)(1

2)

]
=

[
0
3
4

]
,

and

Dpi+1 =

[
4xdui+1

dx

4y dui+1

dy

]
=

[
(1)(1

3)
(−1)(1

2)

]
=

[
1
3
− 1

2

]
.

Linear system for example Hermite Spline
Curve passes through pi at ui = 0: x(0) = ax = 1

y(0) = ay = 1
Curve passes through pi+1 at ui = 1: x(1) = ax + bx + cx + dx = 4

y(1) = ay + by + cy + dy = 3
Slope at pi: x′(0) = bx = 0

y′(0) = by = 3
4

Slope at pi+1: x′(1) = bx + 2cx + 3dx = 1
3

y′(1) = by + 2cy + 3dy = − 1
2

Thus in matrix form:
1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3

ax ay
bx by
cx cy
dx dy

 =

1 1
4 3
0 3

4
1
3 − 1

2

Note, that the two matrices on the left-hand side of this equation are constant,
and do not depend upon the control points or slopes. Only the matrix on the
right varies with the configuration.

14.5.2 Catmul-Rom splines

In the case of Catmul-Rom splines, pi and
pi+1 are again two successive control points.
Now, instead of requiring the user to en-
ter slopes at each control point, we use
the previous point pi−1 and the subsequent
point pi+2 to determine slopes at pi and
pi+1. The vector between pi−1 and pi+1

is used to give the slope at pi and the vec-
tor between pi and pi+2 to give the slope
at pi+1. We set ti = 1

2 (pi+1 − pi−1) and
ti+1 = 1

2 (pi+2 − pi).

102 CHAPTER 14. SPLINE CURVES

In the example to the left, as in the pre-
vious example, pi = (1, 1), and pi+1 =
(4, 3), thus again dui

dx = 1
3 , and dui

dy = 1
2 .

In addition, we have pi−1 = (1,−1) and
pi+2 = (5,−2). Thus, the tangent vec-

tors are ti = 1
2 (pi+1 − pi−1) =

[
3
2
2

]
, and

ti+1 = 1
2 (pi+2 − pi) =

[
2
− 3

2

]
.

Again, the tangent vectors t are in the form

[
4x
4y

]
, but we need slopes in

parametric form, so we compute the scaled tangents

Dpi =

[
4xdui

dx

4y dui

dy

]
=

[
(3
2)(1

3)
(2)(1

2)

]
=

[
1
2
1

]
,

and

Dpi+1 =

[
4xdui+1

dx

4y dui+1

dy

]
=

[
(2)(1

3)
(− 3

2)(1
2)

]
=

[
2
3
− 3

4

]
.

Linear system for example Catmul-Rom Spline
Curve passes through pi at ui = 0: x(0) = ax = 1

y(0) = ay = 1
Curve passes through pi+1 at ui = 1: x(1) = ax + bx + cx + dx = 4

y(1) = ay + by + cy + dy = 3
Slope at pi: x′(0) = bx = 1

2
y′(0) = by = 1

Slope at pi+1: x′(1) = bx + 2cx + 3dx = 2
3

y′(1) = by + 2cy + 3dy = − 3
4

Thus in matrix form:
1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3

ax ay
bx by
cx cy
dx dy

 =

1 1
4 3
1
2 1
2
3 − 3

4

14.5.3 Cardinal splines

Cardinal splines generalize the Catmul-Rom splines by providing a shape pa-
rameter t. With t = 0 we have Catmul-Rom. Values of t > 0 tighten the curve,
making curvatures higher at the joins and values of t < 0 loosen the curve. For

14.5. INTERPOLATION METHODS 103

Cardinal Splines:

ti =
1

2
(1− t)(pi+1 − pi−1),

and

ti+1 =
1

2
(1− t)(pi+2 − pi).

