
A R C H 3 7 0

3D Modeling
& Rendering

3D Concepts:
Data types, Graphics Pipeline,

Construction Planes
Form•Z:

Basic operations

by Brian R. Johnson

Two-dimensional graphics are traditionally used for capturing the precise kinds of data which are needed to
construct a new building, landscape, etc. This is why drafting systems have such complicated snaps and
grids and sometimes require (not simply permit) the numeric entry of data.

The world of three dimensions, on the other hand, is most often used during the design process to assess the
visual character of different design ideas and to answer questions such as "Can we see the garbage can
storage area from the deck?".

Thus, 3D systems are often simpler than their 2D cousins, at least in terms of the primitives which they
support and the precision of the data created. Many do not even include text primitives! Instead, they focus
on making it easy to create and view a 3D representation of the design.

While they may use simpler data, three-dimensional systems are very different from their two-dimensional
counterparts in that the 2D image you see on the screen changes dramatically as you manipulate the
viewpoint, which adds a layer of complexity to the program as well. Where the display list data in a 2D
system pretty much "is" the drawing, the model data of a 3D system is only the raw material from which
the screen image is made. In fact, you never "see" the 3D data, only 2D representations of it. The data is
delivered to the screen through what is called the "Graphics Pipeline".

The Graphics Pipeline
This term refers to a series of transformations that are applied to the data in order to convert it from its 3D
form into the 2D screen image. The "complete" pipeline, like an assembly line, is composed of several
distinct data-processing stages. Also like an assembly line, data generally passes along the pipeline
unaware of data ahead or behind. Further, depending on the desired "product", we might leave out steps or
add steps to the process. Lastly, regardless of the quality of the assembly process, if some of the raw
materials (data or information) are missing, the product cannot be completed. Different manufacturers
(programs) may utilize different procedures, or choose to skip steps–differences which make the products
different (in short, not all 3D programs are alike).

The Raw Material: 3D data
There are three main types of 3D data. These can be thought of as occupying the three geometric domains
of 1D (lines), 2D (surfaces), and 3D (solids).

1D Wireframe
If the data consists simply of lines in space it is called wire frame (a term which is also used to refer
to a “see-through” drawing). Wire frame data is quite easy to create and maintain, and can be
converted easily from 2D data such as that of a 2D drafting system by just adding an extra coordinate.
The graphics pipeline for wire frame data is also simple. However, as the name implies, it is not
possible to view the model "as if it were solid" since opacity data simply isn't present. Nor is it
possible to prepare shaded views of wire frame data.

2D Boundary Representation
Data consisting of two-dimensional elements, or polygons, defined in a 3D coordinate system, is
often called boundary representation (b-rep) data. This is because, like a cardboard or paper model of
a shape, it achieves its shape by describing the surface boundaries, or facets of the 3D shape.
Because b-rep models contain explicit surface information, they may be used with a graphics pipeline
which computes "hidden line" images and surface-shaded images. More complex renderings
displaying surface reflectivity and texture can also be computed from b-rep models. For architects
and other form-oriented designers, this is often as complex a system as is needed. The problem with
this kind of data is that their geometries need not be "real". For instance, it is perfectly legal to
create a single polygon floating in space. Since polygons are (by definition) flat, it has no
thickness, and thus, no volume. It might look like a piece of paper, but a stack of them does not fill
up a box! They work in the visualization system, but you couldn't manufacture such a shape; it
can't exist in the real world.

3D
data

Graphics
Pipeline

2D
Image

3D Modeling & Rendering form•Z

3D Solid Models
When the basic shapes which the system works with are 3D primitives, the system is said to be a
"solid modeling system". Such systems are commonly used in industries which actually
manufacture objects from CAD data, such as the aerospace, automotive, and consumer-products
industries, because the system can guarantee that the shapes it produces can exist in the real world.
One strong feature of solid models is that they can contain "negative" data. That is, you can take any
two shapes and “subtract” one shape from the other. This is something which b-rep systems
generally cannot do. On the other hand, solid modeling systems generally require substantially more
compute power to operate than b-rep systems.

The Pipeline: Step 1: Projection, or squashing 3D info into 2D
The program needs to convert the (3D) model data into a viewable (2D) form. It turns out that certain
matrix formulations can be used for this (a process called projection). While many such projections exist,
as do manual construction techniques (think of plan-oblique, or axonometric, in addition to perspective),
most programs offer only a very limited set, usually perspective and orthographic projections (which are
good for elevations, plans, etc.). You can think of the projection like the lens on a camera–when you point
a camera at a scene the type of lens (zoom, wide angle, fish-eye) you are using changes the character of the
image on the film, but it certainly doesn't change the geometry!

In addition to providing a mechanism for "changing lenses", the program must provide a mechanism (called
a viewing model1) by which the user can control the view. There are two basic ways to approach this:
what we call the environmental model and the object-oriented model. While they are (nominally)
equivalent, in that each may be used to specify any view possible in the other, the relative ease with which
they may be done is very different.

environmental In environmental viewing models the user positions the “camera” or “eye point” in the
same geometrical construct (i.e., in the same coordinate system) as the model itself.
Thus, very precise questions may be asked, like "How much of that building will I see if
I stand in the mayor's office and look out the window?"

object-oriented Object-oriented viewing models2 behave as if the camera is fixed (perhaps on a tripod?)
and the object (the model) is being manipulated–almost as if you held it in your hands.
You bring it closer, turn it this way, or that, and so on. You always look toward the
center of the model (which is a good thing!), but you never know exactly where you are
relative to the geometry of the model.

The Pipeline: Step 2: Hidden-line/surface Removal

Projection is just the beginning of the process too. If the program simply projects all the vertexes of all
the polygons onto the picture plane, then all lines will be visible, creating a "wire frame" graphic† . Most
programs include algorithms for hidden line removal or hidden surface removal, processes which make the
polygons look solid by obscuring or not drawing the lines “behind” them. Each of these algorithms makes
trade-offs between computation time and image quality (i.e., they make errors, but asking for perfection
may cost you a long time). Since different data files (i.e., different geometrical configurations) are subject
to different types of errors, a program which gives you choices between different algorithms is desirable.
You can use the "cheap" (fast) algorithm where possible, but resort to the expensive one(s) as needed.

While a general discussion of hidden-surface removal is beyond the scope of this course, you should be
aware that the most common cause of problems is intersecting geometry (like two interlocked cubes). The
lines of intersection are implicit in the construction, they are not explicitly defined. They occur because of
the interaction of two separate polygons. Remembering that the graphics pipeline used in many simple
modeling programs, or in quick "preview" displays in more capable programs, processes each polygon
separately, you can begin to understand how it can make a mistake trying to process this geometry.

1Model as it is used in this context means "way of doing or describing something". This is more like the usage of
"model" in a phrase such as "the parliamentary model of government" than like its usage in "he built a balsa-
wood model".

2Don't confuse this usage of "object-oriented" with "object-oriented programming" or "object-oriented
graphics"–they all refer to different concepts–too many new concepts, not enough words (sigh).

† Note : As we have seen elsewhere, it is easy to convert data from a "higher order data type" such as boundary-
representation into a "lower order data type" such as wire frame data. Similarly, if the program "knows" what a
cube is, as a solid, it's easy to find the six polygons which describe the faces. As before, converting "downward"
is easy, while converting upward (wire-frame to polygon, or polygon to solid) is quite difficult or impossible
without a source of "superior knowledge" (info that isn't in the lower order model).

#D Modeling & Rendering form•Z

3

The Pipeline: Step 3: Rendering or Hand me my Prismacolors!
Once projection and hidden-line-removal have occurred, the surfaces are rendered onto the screen. This step
depends in part on the hardware you are using (you can't display color on a black and white screen, even if
you have calculated it!) In the simplest approach each polygon is simply colored white. More complex
algorithms employ surface color and algorithmic shading models to describe how light interacts with the
surfaces of the model. A notch above simple shading is the casting of shadows. Such algorithms are
gerally called "flat" or "simple cosine" shading algorithms.

☛ Even though we know both shade and shadow are caused by light interacting with the
surface, rendering shaded images is algorithmically very different from casting
shadows, and many programs (Super3D and AutoShade for example) do shading, but not
shadows. For a sense of how much more work it takes to cast shadows, turn on shadows
in your program and note how long it takes to re render the image.

Beyond shading and shadows, some rendering algorithms are able to make a coarsely faceted model (like a
hexagonal tube) look smoothly curved (like a true cylinder). This characteristic, called "smoothing", is
exhibited by "Gouraud" and "Phong" shading algorithms. Yet more complicated rendering algorithms with
names like "ray tracing", and "Radiosity" take into account how light bounces between surfaces within the
model. A variety of surface characteristics may be applied like "wallpaper" using a technique generally
called texture mapping. With moderately complex data they can take hours or even days to render a single
image, even on a fast computer. They also make very attractive images, which looks so real that they are
called "photorealistic".

In an interesting convergence, rendering algorithms such as radiosity now make more realistic looking
images by employing more and more of what we know about the physics of light, so that their results
come to more and more resemble, not so much a rendering, as a simulation of the scene. That is, the
results are calculated to be right, not just look right.

Construction Planes: 3D data, 2D screen
Consider the figure at right, showing a Wireframe view of a simple box. Notice the point on the image
indicated by the dot. That single 2D image location represents two distinctly different points in space , one
on the front top edge of the box, and one on the back bottom edge of the box. This is the nature of
"projection"–it takes 3D data and compresses or discards some of it in such a way that we get a 2D image.
The reason that multiple 3D points "map" onto the same 2D point is illustrated in the following figure,
which shows a vertical section through the 3D environment, along the view vector (line of sight). This
slice also cuts through the projection plane, or screen image, indicated by the line crossing through the cone
of view. As with the physical world, we look along straight projection lines, seeing objects at various
distances into the scene. Sometimes those objects coincide or overlap. We know they aren't in the same
place in space because they move differently as we move around, but just for the one moment they sure
seem to be!

Now, consider the problem of pointing in 3D. The mouse is
restricted to identifying points on the screen , so if we click at
point #1 in the figure, there is some ambiguity as to where we
are pointing in 3D. We could be pointing at point #2, point
#3, or anywhere along the projection line. To remove the
ambiguity the 3D program needs another restriction on your
pointing operation. If we assume you are indicating locations
in the XY plane, the click at point #1 is immediately
identifiable as indicating point #3 in space. The XY plane
functions as a construction, or reference plane. Form•Z permits
the definition of any number of reference planes, parallel to the
ground plane or one of the elevation planes, or arbitrarily oriented in 3D space.

One of the common mistakes that beginners make when working with 3D programs is not knowing what
or where the construction plane is. If our diagram is a cut through the same box shown in the initial
figure, and we wish to draw another box "on top" of the first box, as shown in the figure below, we might
very well indicate point #1 during the process of drawing the box. If we have not taken care to set the
construction plane correctly, the program will think we mean point #3 and we will produce the second box,
on the ground, rather than the desired box stacked on top of the original at point #2. The insidious thing is
that both interpretations yield the same wireframe axonometric view!

XY-plane

Eye point

Projection plane
(screen)

1

2

3

projection line

3D Modeling & Rendering form•Z

XY-plane

Eye point

Projection plane
(screen)

1

2

3

projection line

If you Click the
mouse at point #1
on the screen, in
the Axonometric
v iew. . .

...and the program
thinks the click is
at point #2. . .

...and the program
thinks the click is
at point #3. . .

The Axonometric v iew

of the results looks l ike this,
but . . . 1

the Plan v iew

of the results looks l ike this.

To avoid this mistake, try to think about where you are pointing as a 3D, not a 2D issue; pay attention to
the active construction plane setting, and if you aren't sure if you "did it right", switch to another view
(plan or elevation are good) to check the results of the operation. As you work with 3D you will find that
this becomes easier.

☛ Normally we think of altering the view point and altering the construction plane as quite
separate activities, but the Form•Z "preset" view commands (Plan, Elevation, and
Axonometric) change both the view point and the current construction plane, so use
caution!

Working Smart in 3D
As with our previous experiences, the primary element in Working Smart is telling the computer what to
do, not doing it ourselves. The catch, of course, is in knowing how to tell it to do something. For that
you will have to explore the program, finding out what features it provides which allow you to instruct it.
In addition, here are some general guidelines which well may make your lives easier.

• Use drawing aids where possible. As in 2D drawing programs, most 3D programs offer some sort of
snaps: grid, object, etc. If you use these wherever possible your data will be crisper and more
accurate. Also, object snaps in 3D often violate the "drawing happens in the reference plane" idea since
the snap points offer real positions in 3D to which you may refer.

• Apply the KISS principle (Keep it Simple Stupid). Most 3D programs offer commands which
potentially generate lots of data (the revolve, or lathe tool is one example). Use these with caution as
it is very easy (and tempting) to generate too much data. As a result operations on the data take
longer and longer, and the time required to edit or view the model becomes unacceptable.

If you are interested in smooth curves, look for programs with options for smooth rendering faceted
shapes rather than trying to make smooth shapes with vast quantities of small polygons. Use the
rendering options, when available, and live with roughly faceted shapes when they aren't.

• Structure your work into hierarchical shapes or layers. You will probably be editing the 3D data
using a 2D screen. As the model becomes more and more complex, it is easy for the screen to
become cluttered, making it hard to point at or select the things you want to manipulate. Most
programs offer commands which help create clump "objects". Since the objects can generally be
edited independently of the composite model, they function as a simple way of segregating the data.
Further, many programs utilize a system of "layers" by which data may be isolated or segregated as
well.

#D Modeling & Rendering form•Z

5

Step 1: Getting Acquainted
Before you start to work on the project, you should take Form•Z for a "test drive" and see how it works.

Launching the Program
Form•Z is a complex program. In order to keep your first encounter with it reasonably uncomplicated, I
have used a configuration option available in the program to create a simplified set of menus. In order to
use theese, you need to copy the two files form•Z Menus.370 and form•Z Preferences.370 to your
floppy disk or working directory. You can find copies in the "Resources" folder on the course file server.
Once copied, you may launch form•Z by selecting both files in the Finder and then selecting the
FILE/OPEN command (or typing -O). This will launch form•Z and set up your environment according
to the settings in these two files. Once you launch it you will see a screen display similar to that shown
above. The following paragraphs discuss elements of this display.

The Reference Plane
Form•Z displays a light blue grid on a portion of the reference plane (the plane extends to infinity). This is
visible in the middle of the screen above. You do not need to constrain your drawing work to the gridded
part of the plane.

The Prompts Window
Form•Z displays kind or running dialog with the user in the "Prompts" window here shown located in the
lower-left corner of the screen. You will often find it useful to refer to this area to see what the program is
expecting of you next.

"Pallette" Windows
Along the right edge of the screen shot you can see three of the various "palette" windows available in
form•Z. These display, and allow you to manipulate various aspects of the program, such as the defined
layer names, light sources, or saved viewing conditions. These can be moved around, or simply closed when
not needed (the screen sometimes get's a bit crowded).

3D Modeling & Rendering form•Z

The Menu
(Check out the Form•Z manual for a complete overview and a more complete tutorial)

If you click on one of the icons in the menu along the left edge you will see a menu of options open up to
the right. The highlighted choice represents the default choice, but this may be easily changed.

Rows 1, 2 & 3

During data input you will select primitives from the second and third rows of the menu to input
geometry. Depending on the setting of the options in the first row, form•Z will create different kinds of
2D or 3D data. Withe the setting shown in the screen shot, and at left, a rectangle drawn in the
construction plane would be automatically extruded into a 3D volume, or brick (you can see one of these
shapes, in wire frame, being drawn right now).

Rows 4 & 5

The setting shown in the fourth row of the menu indicates the current "topological level". This setting
relates to what selection actions mean and the fact that form•Z's data is that of a solid modeler. The setting
shown here (Face) indicates that if we use the pointer tool located in row 5 to select a portion of the data,
we will be selecting faces. This makes a significant difference in terms of the editing actions we might
make on the shape.

Row 6
The icon shown in the next row is almost identical to that of the first row. The only difference is that the
setting in the first row relates to actions creating NEW data, while the selection from the sixth row is used
to extrude EXISTING data. In other respects they act much the same.

Rows 7, 8 & 9
Some for form•Z's editing options are illustrated in the seventh row of icons, with the "rounding" tool
shown here. This tool may be used to round-off corners of square box shapes and so on. Depending on the
setting for topological level, this tool may be used to round off one single edge, or segment, all the edges
of a face, or all the edges of the object. Rows 8 and 9 provide additional editing operations. The "union"
operation shown in row 8 is an example of a Boolean operation, a type of data manipulation unique to true
solid modeling programs. The Boolean "difference" operation may be used to literally subtract one shape
from another, makeing it easy to "punch holes" in walls, and so on.

Rows 8 & 9
This setting identified in row 8 changes the results of many of the editing operations available in row 9.
The simplest example is the difference between "self" and "copy" when performing a "Move" operation. If
the operative mode is "self", the selected data is simply relocated. If the operative mode is "copy", then the
selected data is used to create new data at the destination, but is left unaltered. This makes it easy to
duplicate a shape at some specific offset from the parent shape.

Note: You cannot "move" (translate in space) a shape by simply dragging it as you might elements of a
2D graphic. You must select it, then select the Move tool and specify the starting and ending points of the
move.

Rows 10
Row 10 contains tools for setting and querying data attributes, such as object color, layer, transparency, and
such. The "query" tool, which has a question mark as an icon, is quite useful as well, because it can be
used to query the volume of a complex shape or to change the layer it is placed on.

Row 11
The purpose of this tool is probably self-evident. It is also possible to delete data by selecting it and the
pressing the "delete" key.

The Extrusion-
mode indicator

Topological
Level

Extrusion
operation

Editing

commands

Editing &
replicating data

Properties

#D Modeling & Rendering form•Z

7

Row 12
The last row is used to select or define different construction plane or local coordinate systems. Your most
likely choices here are simply the XY, YZ, or XZ planes.

ALONG THE LOWER LEFT EDGE OF THE WINDOW
Across the lower left edge of the window are a number of small controls that you may want to know about.
Some of them are a bit beyond the scope of this course, the the ones you might care about are shown here.

"Perpendicular" toggle. When darkened, as shown here, linear distances are "snapped" perpendicular to
the current construction plane.

Zoom options. Click here to see a variety of zoom options.

Snaps. They're currently set to "none" in this case, but these two icons give access to object and grid
snaps that may prove useful.

"Vertex Editing"

One of the interesting capabilities which Form•Z provides is sometimes called "vertex editing" or
"tweaking". Tweaking means distorting objects by moving individual points. By setting the topological
level to "Point", you indicate that any "Move" operations operate on only single vertecies. Now, click and
drag any vertex which you wish to shift. (It moves parallel to the working plane, unless the perpendicular
toggle is on.)

Step 2: Build your model
The Base Model

Each of you will be doing a separate project involving the design of a building just north of Gould. To
simplify things, I have created a "base model" of the surrounding buildings. The standard base model is
located on the Mac file server in the Resources folder. Copy it to your disk. Now open it using
Form•Z and try out different viewing options to become familiar with them, BEFORE you try editing (that
way, if you accidentally trash the data, you can just get a clean copy and start over). Try looking at the data
using the various preset options, using different rendering algorithms, etc.

There are several techniques you can use to create your 3D model. It is not possible to simply "draw in
plan and elevation" and convert the 2D drawings into 3D data (plans and elevations don't resolve certain
ambiguities). You will, however, use 2D primitives as the basis for your 3D data. For example, you
might be able to draw a 2D plan of your design and then take the 2D outlines for your walls and extrude
them into the vertical dimension.

Some shapes won't easily extrude. For some of these you might find that the revolve operation, which
creates axially symmetrical objects from their profile lines, can be used.

Finally, you might have to simply draw new data into the model, using the drawing tools found in the
second and third rows of the menu. Depending on whether you're in 2D mode or 3D mode (selected by
choosing one of the options from the first row of the menu) these actions will make simple 2D shapes or
extruded 3D shapes.

Task

Using the available tools, build up your 3D model. How complicated does it need to be? Well, work
around the problem, starting with the basic massing and roof forms, then adding detail (windows, trees,
people, etc.) as time and interest allow. You need to do enough work to explore the program, and to
demonstrate that you can make it do what you want it to. As with most design projects, you could spend
many hours working on this, without doing an appreciably better job than someone who spends less time.
Try to enjoy yourself, but also practice some discipline, so that the time you do spend is effective learning
time, not just “futzing” time.

You will probably find tools and editing actions in addition to those described here. These are generally
described in the Form•Z User's Guide , available in the CAUP library. There is also an extensive online
help facility within form•Z. If you find a command you particularly like, make a note of how it was useful
(see questions below).

Refernce Plane
manipulation

3D Modeling & Rendering form•Z

If you do opt to create a more detailed model (by revolving your own trees, etc.), think about how you will
handle all that data before execution of editing commands slows to a crawl. You might look into Layers,
for some help. Simply adding data-intensive things last can also help a lot!

Step 3: View it!
Making the data is only part of the puzzle. After you have a model (and while you are building it) you will
want to generate views of it. These are controlled through the VIEW menu. Remember that 3D programs
specify the view in terms of the eye position (also called the "station point" in some systems), and another
point at (or through) which you are looking (called the "focal point" in some programs, or the "center of
view" [COV]). The EDIT CONE OF VISION option might interest you--try dragging the station
point or center of view to new locations. The DISPLAY menu will probably be of interest here too.
(Please note: you can't cast a shadow without a light-source! and in form•Z you have to enable shadow
casting for the light AND the rendering algorithm--hold down the option key when you pick "shaded
render" to make that setting).

Task

Explore your model using the different viewing tools. Do you feel that you really have control of what you
are going to see? Keep notes about what's missing or hard to do so you can answer question #4. Print at
least three of these views to turn in.

Form•Z-to-Word (or...) Image Transfers
For additional discussion of this topic, refer to CompuFacts #4.

This discussion is not just pertinent to getting from Form•Z to Word. It also relates to getting any color
data, especially variable color information, into black and white or gray-scale documents, and it addresses
what a 3D program generates as a 2D image, especially as information for subsequent editing.

Since the Form•Z drawing, like a spreadsheet display, is only one representation of the model (like a
photograph is one of many possible photographs of the same reality) "data transfer" probably means "image
transfer" rather than referring to transference of the actual 3D data. [Transfer or exchange of 3D data follows
rules very similar to those for exchange of 2D CAD data.]

What Form•Z does do is "SAVE AS" (in the File menu) the 2D screen images to PICT files (the most
common Mac graphics-file format). While this is good, we need to be aware that the rendering algorithm
chosen determines what kind of PICT file we will generate.

☛ It is unfortunate that the SAVE-AS "FORMAT" pop-up-menu, which offers several choices
in addition to PICT, makes no distinction between which of those options pertain to saving
a 2D image and which are saving 3D data, which can be quite confusing! DO remember to
save your data as normal form•Z data too!

PICTs: Raster or Vector format?
☛ PICT stands for "picture". The PICT file format, which is defined by Apple Computer, is

the format used to store graphics on the Macintosh clipboard. This is why it is so
commonly accepted by Mac programs.

Macintosh PICT files can contain either purely raster or object data, or a mixture of the two. The contents
are determined by the program which generates the PICT.

Form•Z, in turn, has several rendering algorithms which can be used to generate the image, some using
raster logic, and the others using object or vector logic. The DISPLAY options for renderer select among
the choices, but activating shadows (for instance) might cause a switch from an object to a raster rendering
algorithm. Based on what kind of data the rendering algorithm generates, the SAVE AS formatting
option PICT will create DRAW or PAINT data. The only way you can know for sure what you will get
is to experiment a bit.

Picking your PICT type
The type of PICT image that you will need for a particular task will depend on that task as well as the
complexity of the 3D model, the kind of final output or display and so on. .

PICT files

#D Modeling & Rendering form•Z

9

Selecting color depth in form•Z
The "Display" setting interacts with the current "display depth" (set using the IMAGE OPTIONS menu
item at the bottom of the display menu) to determine what color information is included in the PICT. This
option may be set to 8, 16, or 24 bits per pixel.

Study Questions
1. 3D data generally occurs in one of three forms, which can be thought of as representing 1D, 2D, and

3D geometries: What is the name for each? 1D: __________________, 2D: __________________,

3D: __________________.

2. Which of the above types of data is required for "Boolean Operations"? ____________________.

3. The process of converting (squashing) 3D coordinates into 2D coordinates is called what?

4. Identify at least two ways of “working smart” in 3d programs such as form•Z.

5. What is the most common cause of problems for programs when doing hidden line/surface removal?

6. The person next to you is using form•Z. They are looking at a plan view of their model and swearing.
It seems they were working in axonometric view, where they drew one building block, then drew
another one on top of it, but when they changed to plan view it moved. What haven't they figured out?
Explain.

7. Most 3D programs utilize the idea of a "view vector" in some form or another. This view vector is the
line from the viewers eye (or camera) to the center of the view, or focal point. In a perspective view,
the view vector determines whether the perspective is a 1-point, 2-point, or 3-point perspective. What
orientations of the view vector give each type of perspective? (give examples).

8. Most polygon-based modeling programs create models by addition, that is, each primitive or tool
creates a visible element of data which is added to the existing data. While you can select and delete
entire polygons, few of these programs support the idea of "negative data", tools with which you can
remove part of the model. Does form•Z?

9. What is the name for the modeling process which creates 3D data by extending a 2D view (such as a
plan) into space in a specific direction?

10. If you are trying to model a smooth cylinder, you may need to choose between more data and a more
complex rendering algorithm. Which would you choose, and why?

11. True or False? Programs capable of “shading” the surfaces of a building must also be capable of
“casting shadows” on those surfaces?

12. Let’s say you wish to include a Form•Z "rendering" in a presentation which will involve layout of
several separate images in one document. Name two Form•Z options which you should think about
and state why.

13. What were the three generic reasons to select a raster PICT file as a transfer medium for a graphic?

14. What were the three generic reasons to select an object PICT file as a transfer medium for a graphic?

Wire frame

Hidden line

Shaded

Shaded & Edited
in Word

3D Modeling & Rendering form•Z

The Exercise
Follow the instructions in the previous sections to create a "proposal" for an addition to the College Inn.
Print appropriate hardcopy images and answer the questions below.

Your electronic submission should contain ...
1. A copy of your finished Form•Z document.

Your hardcopy submission should contain ...
2. At least three black & white or color laser prints showing the model from different view points.

One of these should present a “street level” view of the building.

3. Answers to the questions below (done in Word).

Questions
1. What kind of 3D data does Form•Z utilize: wireframe, b-rep, or solid?

2. What does the term "topological level" refer to?

3. In a perspective view, the view vector determines whether the perspective is a 1-point, 2-point, or 3-
point perspective. What orientations of the view vector give each type of perspective? (give
examples).

4. What purpose do Form•Z's "Reference planes" serve?

5. If you use the SAVE-AS option PICT to create a file, can you use it in another session of form•Z
later on if you decide you want another view point?

For Extra Credit
Use Form•Z's SAVE AS operation to export at least three color images of the model. Open these using
Canvas, Word, or Page Maker and arrange them on a single 11"x17" page, making a one-page presentation
of the design. Add lines and/or text as needed to enhance the drawing. Turn in a color print-out of the final
layout, and include the Canvas file in your submission folder.

Canvas is a 2D dual-mode program. It is one of the
options here because it "does color". One particular
thing to be aware of is that Canvas treats raster data
in two very different ways, as a "painting" or as a
"picture object". The difference is that when you
scale a "painting" any data which is not actually
visible on the screen is discarded, so if you scale it
way down and then back up again, you'll find much
of your image missing. A "picture object" (or
Pixmap) on the other hand, preserves all it's image
data when scaled up or down, so it will print better
(why?). When you first open or import ("Place") a
PICT file saved from form•Z, it will be a "painting".
Use tje Object | Object specs ... dialog box to change the type of the object (click on the paintbrush and a
palette of options will appear).

Canvas Ojbect
Type Icons

Picture Object

Painting

