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Considering a Career in Statistics?

You Might Be Interest to Know That . . .

• according to a comprehensive ranking of 200 different jobs by
JobsRated.com, the three best professions are

1. mathematician

2. actuary

3. statistician!!!

• the three worst professions are

198. taxi driver

199. dairy farmer

200. lumberjack
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Why I Like Being a Statistician

• in exchange for providing help with statistics, get to work with
highly motivated folks passionate about their fields of expertise

• since statistics is used in a wide range of applications, have
an opportunity to learn something about many different areas
(don’t have to get ‘stuck’ in any one particular area of interest)

• some problems I have had a chance to work on:

− assessing performance of atomic clocks

− deciphering Martian annual atmospheric pressure cycles

− characterizing vertical shear and turbulence in the ocean

− assessing effect of hormone therapy on menopausal transition

− forecasting hazards to coastal communities due to tsunamis

− interpreting thickness of Arctic sea ice (today’s topic)
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Some Background

• joint effort with Drew Rothrock (APL), Tilmann Gneiting (De-
partment of Statistics), Mark Wensnahan (APL) and Alan
Thorndike (Department of Physics, University of Puget Sound)

• scientific question of interest: has the average thickness of Arc-
tic sea ice declined significantly over the past 30 years?

• thickness can be deduced from measurements of draft (sub-
merged portion of sea ice)

• draft measured using upward-looking sonars on submarines

• our effort differs from previous ones by use of

− a new statistical model for draft measurements

− newly archived data for submarine cruises from 1975 to 2001
(almost doubling the amount of available data)

3



Ice Draft from 
Upward-Looking Sonar 

101 data points,        
each a 50-km average. 

Profile data in archive.        
121,000 km 

(Wensnahan et al., EOS, Jan., 2007) 



Submarine Cruises 
Month vs Year 

Data are archived at the National Snow and Ice Data Center   
[Google: NSIDC] 



Paper Charts (Analog)  
are scanned and  
a digital trace extracted. 

(Wensnahan & Rothrock, GRL, 2005; Wensnahan et al., EOS, 2007) 

1600 rolls: 36 km 



Model for Sea Ice Thickness Data

• let Hx,t represent average of 1 km measurements taken at lo-
cation x and time t (x = [0, 0] = Pole & 1975 ≤ t ≤ 2001)

• let τ represent time relative to start of year

• assume so-called ‘multiple regression’ model:

Hx,t = C + I(t) + A(τ ) + S(x) + ≤x,t,

where

− C is the overall mean ice thickness

− I(t) is the interannual variation (from one year to the next)

− A(τ ) is the variation within a year (annual cycle)

− S(x) is the spatial field

− ≤x,t is an error term
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Understanding the Statistical Properties of Hx,t: I

• at a given time t and location x, we form Hx,t by averaging
together L = 1000 basic measurements Hx,t,l, l = 1, 2, . . . , L

• each basic measurement Hx,t,l comes from the upward-looking
sonar and is the ice thickness averaged over a 1 meter patch

• assume each Hx,t,l comes from a population with an unknown

mean µ and unknown variance σ2 (i.e., a standard deviation of
σ), where µ = C + I(t) + A(τ ) + S(x)

• since basic measurements Hx,t,l and data Hx,t are related by

Hx,t =
1

L

LX

l=1

Hx,t,l,

Hx,t is a sample mean that estimates the unknown µ
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Understanding the Statistical Properties of Hx,t: II

• can estimate unknown variance σ2 using the sample variance:

σ̂2 =
1

L− 1

LX

l=1

°
Hx,t,l −Hx,t

¢2

• σ2 is the variance associated with each individual Hx,t,l

• if the Hx,t,l came from a random sample, theory says variance

associated with the sample mean Hx,t is σ2/L; i.e., the vari-
ability in Hx,t would decrease at a rate given by L−1

• alas, standard statistical theory is problematic because Hx,t,l
cannot reasonably be regarded as coming from a random sample

• Q: what can go wrong if you don’t have a random sample?
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Proper Use of Standard Statistical Theory: I

• in late March of every year, the Acme Beer Corporation (ABC)
sends the Ninety-Nine Company (NNC) three packages of beer,
with 33 bottles in each package, for a total of 99 bottles of beer
(considered to be a random sample from a population of beers)

• NNC has 99 employees, identified by l = 1, 2, . . . , 99

• at 5PM on 1 April of each year, employee #1 opens the three
packages and takes out the 99 beers, pouring the contents into
99 glasses labelled by l = 1, 2, . . . , 99

• employee #l takes glass l, but, prior to drinking the beer, pours
it through a beer analyzing machine (BAM), which measures
% hop content Hl (with no error and no loss of beer)

• employee #99 sends data H1, H2, . . . , H99 back to ABC
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Proper Use of Standard Statistical Theory: II

• based upon H1, H2, . . . , H99, an ABC statistician† computes
the sample mean H, the sample variance σ̂2 and then a 95%
confidence interval for the true unknown % hop content:

[H − 1.96
√

(σ̂2/99), H + 1.96
√

(σ̂2/99)]

• if the target % hop content falls in this interval, upper manage-
ment is happy and gives a bonus to everyone at ABC

• following plot shows data Hl for 2007 (circles), their sample
mean (blue dashed line), the 95% confidence interval (blue solid
lines) and the target % hop content (red dashed line)

• bonuses granted – hurray!

†quite happy, by the way, with his/her job! 11



Results for 2007
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Misuse of Standard Statistical Theory: I

• in 2008, disaster struck: while unloading the beer, NNC em-
ployee #13 dropped one package, destroying 33 bottles of beer

• to save the day, employee #1 came up with following scheme

− pour 66 bottles of beer into glasses 1,2,4,5,7,8,. . . ,94,95,97,98,
leaving glasses 3, 6, 9, . . . , 96, 99 empty to start with

− pour one third of glasses 2 & 4 into glass 3

− pour one third of glasses 5 & 7 into glass 6

− pour one third of glasses 8 & 10 into glass 9

− . . .

− pour one third of glasses 95 & 97 into glass 96

− pour one third of glasses 98 & 1 into glass 99

• now have 99 glasses of beer (each two thirds filled), so proceed
as usual (NNC employees were drinking too much anyway!)
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Misuse of Standard Statistical Theory: II

• employee #1’s scheme introduces correlation into the data:
data for glass 3 is an exact average of those for glasses 2 & 4
etc.

• we no longer have a random sample of size 99, so treating data
as such leads to potential problems, as illustrated by the fol-
lowing two plots
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Incorrect Results for 2008
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Correct Results for 2008
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Taking Correlated Measurements into Account: I

• assessing the variability in a sample mean H when dealing with
correlated data requires an adjustment to the rule that the
variance of H is given by σ2/L

• depending on the exact nature of the correlation, appropriate
adjustment can take different forms

• for sea ice data, considered two models for correlation

− short-range correlation: measurements that are close in dis-
tance to one another are correlated, but correlation disap-
pears rapidly with increasing distance

− long-range correlation: similar to short-range case, but now
correlation does not disappear rapidly with increasing dis-
tance

• as next 2 plots show, difference between these models is subtle
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Simulated Data with Short-Range Correlation
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Simulated Data with Long-Range Correlation
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Taking Correlated Measurements into Account: II

• for short-range correlation (assuming L is not too small), cor-
rection to σ2/L takes the form σ2/L0, where typically L0 (the
‘effective number’ of data points) is less than L (note that rate
of decay is still L−1, the same as for a random sample)

• for long-range correlation, correction to σ2/L takes the form
to σ2/Lα, where 0 < α < 1; i.e., the variance of H decreases
at a slower rate than if we have either a random sample or
short-range correlation

• as following plot shows, empirical evidence suggests that sea ice
data have long-range dependence
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Sample (Circles) and Theoretical Variances versus L
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Results from Multiple Regression Model: I

• returning now to our multiple regression model

Hx,t = C + I(t) + A(τ ) + S(x) + ≤x,t,

can use what we have learned about how the Hx,t variables are
correlated to specify the statistical properties of ≤x,t

• fitting model to the data gives us estimates of its components

• following plot shows estimated interannual variation I(t), along
with residuals (estimates of ≤x,t) about fit (blue for January to
June data, red for rest of year)
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Results from Multiple Regression Model: II

• change from 1981 to 2000 is −1.13 m

• steepest decline (−0.08 m/yr) occurred in 1991

• no recovery by 2000

• much fuller data set strengthens previous results (Rothrock et
al., 1999, and Tucker et al., 2001)

• multiple regression model explains 79% of variance in data
(standard deviation is 0.98 m)

• unexplained variance has standard deviation of 0.46 m

• estimated standard deviation of measurement errors is 0.25 m
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Concluding Comments

• statistical analysis is central to properly interpreting data in
almost all areas of science and technology

• statisticians can make a huge impact on issues of central interest
to society

• demand for well-qualified statisticians remains high – there is
much work to be done, and hopefully you will decide to join in!
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