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Nonparametric Tests

• Nonparametric tests are useful when normality or the CLT can not be used. 
• Nonparametric tests base inference on the sign or rank of the data as opposed to the 

actual data values.
• When normality can be assumed, nonparametric tests are less efficient than the 

corresponding t-tests.
• Sign test (binomial test on +/-)
• Wilcoxon signed rank (paired t-test on ranks)
• Wilcoxon rank sum (unpaired t-test on ranks)
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In the tests we have discussed so far (for continuous data) we have 
assumed that either the measurements were normally distributed
or the sample size was large so that we could apply the central 
limit theorem. What can be done when neither of these apply?

• Transform the data so that normality is achieved.

• Use another probability model for the measurements e.g. 
exponential, Weibull, gamma, etc.

• Use a nonparametric procedure

Nonparametric methods generally make fewer assumptions about 
the probability model and are, therefore, applicable in a broader 
range of problems.

BUT! No such thing as a free lunch...

Nonparametric Tests
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These data are REE (resting energy expenditure, kcal/day) for 
patients with cytic fibrosis and healthy individuals matched on age, 
sex, height and weight.

Pair REE -
CF

REE -
healthy

Difference

1 1153 996 157
2 1132 1080 52
3 1165 1182 -17
4 1460 1452 8
5 1162 1634 -472
6 1493 1619 -126
7 1358 1140 218
8 1453 1123 330
9 1185 1113 72

10 1824 1463 361
11 1793 1632 161
12 1930 1614 316
13 2075 1836 239

Nonparametric Tests
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w i t h  # 5 w / o  # 5
m e a n 9 9 . 9 1 4 7 . 6

s t d . d e v 2 2 5 . 7 1 5 2 . 9
n 1 3 1 2
t 1 . 5 9 3 . 3 4

What’s your conclusion?

Nonparametric Tests
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Pair REE -
CF

REE -
healthy

Difference Sign

1 1153 996 157 +
2 1132 1080 52 +
3 1165 1182 -17 -
4 1460 1452 8 +
5 1162 1634 -472 -
6 1493 1619 -126 -
7 1358 1140 218 +
8 1453 1123 330 +
9 1185 1113 72 +

10 1824 1463 361 +
11 1793 1632 161 +
12 1930 1614 316 +
13 2075 1836 239 +

Let’s simplify by just looking at the direction of the 
difference ...

Nonparametric Tests
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We want to test:
H

H
o d

a d

:

:







0

0

Can we construct a test based only on the sign of the difference (no 
normality assumption)?

If d = 0 then we might expect half the differences to be positive and half 
the differences to be negative. 

What is a reasonable probability model for the sign of the differences?

Re-express the Ho given above in terms of that probability model

Nonparametric Tests
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In this example we find 10 positive differences out of 13. What’s the 
probability of that (or more extreme) if Ho is true?

. bitesti 13 10 .5

N   Observed k   Expected k   Assumed p   Observed p
------------------------------------------------------------

13         10          6.5       0.50000      0.76923

Pr(k >= 10)           = 0.046143  (one-sided test)
Pr(k <= 10)           = 0.988770  (one-sided test)
Pr(k <= 3 or k >= 10) = 0.092285  (two-sided test)

What is the p-value for our sign test?

What do you conclude (α = .05)?

Sign test
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• What we really tested was that the median difference was zero. 

• Note that we didn’t make any assumption about the distribution 
of the underlying data

• The hypothesis that the Sign Test addresses is:

Ho :  median difference = 0

Ha :  median difference > (<, ) 0

Q: If it is more generally applicable then why not always use it?

A: It is less efficient than the t-test when the population is normal. 
Using a sign test is like using only 2/3 of the data (when the 
“true” probability distribution is normal)

Sign test
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Sign Test Overview:

1.Testing for a single sample (or differences from paired data).

2.Hypothesis is in terms of , the median. 

3.Assign + to all data points where Xi > o for Ho: = o.

4.Let T= total number of +’s out of n observations.

5.Under H0, T is binomial with n and p=1/2 (i.e. testing Ho: p = 0.5 
on T is the same testing Ho: = o on X)

6.Get the p-value from binomial distribution or approximating 
normal, T/n ~ N(1/2,1/4n)

7.This is a valid test of the median without assuming a probability 
model for the original measurements.

Sign test
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Q: Can we use some sense of the magnitude of the observations, 
without using the observations themselves?

A: Yes! We can consider the rank of the observations

Pair REE -
CF

REE -
healthy

Difference Sign rank
of |di|

1 1153 996 157 + 6
2 1132 1080 52 + 3
3 1165 1182 -17 - 2
4 1460 1452 8 + 1
5 1162 1634 -472 - 13
6 1493 1619 -126 - 5
7 1358 1140 218 + 8
8 1453 1123 330 + 11
9 1185 1113 72 + 4
10 1824 1463 361 + 12
11 1793 1632 161 + 7
12 1930 1614 316 + 10
13 2075 1836 239 + 9

Nonparametric Tests
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A nonparametric test that uses the ranked data is the Wilcoxon 
Signed-Rank Test.

1.Rank the absolute value of the differences (from the null median).

2.Let R+ equal the sum of ranks of the positive differences.

3.Then

4.Let

5. Use normal approximation to the distribution of Z (i.e. compute p-
value based on normal dist. i.e. Z ~ N(0,1)).
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Nonparametric Tests
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Note:

• If any di = 0 we drop them from the analysis (but assuming 
continuous data, so shouldn’t be many).

• For “large” samples (number of non-zero di > 15), can use a 
normal approximation.

• If there are many “ties” then a correction to V(R+) must be 
made; computer does this automatically.

• Efficiency relative to t-test is about 95% if the true distribution 
is normal.

Wilcoxon Signed Rank Test
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. signrank cf = healthy

Wilcoxon signed-rank test

sign |      obs   sum ranks    expected
-------------+---------------------------------

positive |       10          71        45.5
negative |        3          20        45.5

zero |        0           0           0
-------------+---------------------------------

all |       13          91          91

unadjusted variance      204.75
adjustment for ties        0.00
adjustment for zeros       0.00

----------
adjusted variance        204.75

Ho: cf = healthy
z =   1.782

Prob > |z| =   0.0747

For the REE example we find R+ = 6+3+1+8+11+4+12+7+10+9 = 71

Conclusion?

Wilcoxon Signed Rank Test
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The same issues that motivated nonparametric procedures for the 1-
sample case arise in the 2-sample case, namely, non-normality in small 
samples, and the influence of a few observations. Consider the following 
data, taken from Miller (1991):

These data are immune function measurements obtained on healthy 
volunteers. One group consisted of 16 Epstein-Barr virus (EBV) 
seropositive donors. The other group consisted of 10 EBV seronegative 
donors. The measurements represent lymphocyte blastogenesis with 
p3HR-1 virus as the antigen (Nikoskelain et al (1978) J. Immunology, 
121:1239-1244).

Nonparametric Tests
2 samples
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# Seropositive Seronegative
1 2.9 4.5
2 12.1 1.3
3 2.6 1.0
4 2.5 1.0
5 2.8 1.3
6 15.8 1.9
7 3.2 1.3
8 1.8 2.1
9 7.8 2.1
10 2.9 1.0
11 3.2
12 8.0
13 1.5
14 6.3
15 1.2
16 3.5

Nonparametric Tests
2 samples
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Can we transform to normality?

Nonparametric Tests
2 samples
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Does the 2-sample t statistic depend heavily on the transformation 
selected?

Does our interpretation depend on the transformation selected?

 RAW SQRT LOG 
Y

s

1

1
2  

4.88
17.11

2.06
0.68

1.31
0.54

Y

s

2

2
2  

1.75
1.13

1.28
0.12

0.44
0.23

t 
df 

p-value 

2.88
17

0.01

3.34
21

0.003

3.68
23

0.001
 

Nonparametric Tests
2 samples
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Idea: If the distribution for group 1 is the same as the distribution for 
group 2 then pooling the data should result in the two samples 
“mixing” evenly. That is, we wouldn’t expect one group to have many 
large values or many small values in the pooled sample.

Procedure:

1. Pool the two samples

2. Order and rank the pooled sample.

3. Sum the ranks for each sample.

R1 = rank sum for group 1

R2 = rank sum for group 2

4. The average rank is (n1+n2+1)/2.

5. Under Ho: same distribution, E(R1) = n1(n1+n2+1)/2 (why?)

Nonparametric Tests
Wilcoxon Rank-Sum Test
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6. The variance of R1 is

(an adjustment is required in the case of ties; this is done 
automatically by most software packages.)

7. We can base a test on the approximate normality of

This is known as the Wilcoxon Rank-Sum Test.

 V ( R 1 )  





 
n n

n n1 2
1 21 2

1

1 1

1

R E ( R )
Z =

V ( R )


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Order and rank the pooled sample ...

# Sero + Rank S+ Sero - Rank S-
1 2.9 16.5 4.5 21.0
2 12.1 25.0 1.3 6.0
3 2.6 14.0 1.0 2.0
4 2.5 13.0 1.0 2.0
5 2.8 15.0 1.3 6.0
6 15.8 26.0 1.9 10.0
7 3.2 18.5 1.3 6.0
8 1.8 9.0 2.1 11.5
9 7.8 23.0 2.1 11.5
10 2.9 16.5 1.0 2.0
11 3.2 18.5
12 8.0 24.0
13 1.5 8.0
14 6.3 22.0
15 1.2 4.0
16 3.5 20.0

273 78

Wilcoxon Rank-Sum Test
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The sum of the ranks for group 1 is R1 = 273

The null hypothesis is, Ho: same distribution, 

. ranksum immune, by(ebv)

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

ebv |      obs    rank sum    expected
-------------+---------------------------------

0 |       10          78         135
1 |       16         273         216

-------------+---------------------------------
combined |       26         351         351

unadjusted variance      360.00
adjustment for ties       -1.35

----------
adjusted variance        358.65

Ho: immune(ebv==0) = immune(ebv==1)
z =  -3.010

Prob > |z| =   0.0026

Conclusion?

Compare to t-tests.

Wilcoxon Rank-Sum Test
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Notes:

1. The Wilcoxon test is testing for a difference in location
between the two distributions, not for a difference in spread. 
In fact, the actual hypothesis that is being tested is Ho: 
P(randomly chosen Y1 > randomly chosen Y2) = 0.5 (!).

2. Use of the normal approximation is valid if each group has >
10 observations. Otherwise, the exact sampling distribution 
of R1 can be used. Tables and computer routines are 
available in this situation.

3. The Wilcoxon rank-sum test is also known as the Mann-
Whitney Test. These are equivalent tests. 

Wilcoxon Rank-Sum Test
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• Nonparametric tests are useful when normality or the CLT can 
not be used.

• Nonparametric tests base inference on the sign or rank of the 
data as opposed to the actual data values.

• When normality can be assumed, nonparametric tests are less 
efficient than the corresponding t-tests.

• Without imposing other assumptions on the distributions being 
compared (e.g., symmetry) there may not be an obvious 
summary statistic (e.g., mean, median, median pairwise mean) 
to interpret when the null hypothesis is rejected, or not. 

Summary
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Inference for two-way tables

General R x C tables
• Tests of homogeneity of a factor across groups or independence of two factors rely on 

Pearson’s X2 statistic.
• X2 is compared to a ((r-1)x(c-1)) distribution
• Expected cell counts should be larger than 5.

2 x 2 tables
• Cohort (prospective) data (H0: relative risk for incidence = 1)
• Case-control (retrospective) data (H0: odds ratio = 1)
• Cross-sectional data (H0: relative risk for prevalence = 1)
• Paired binary data – McNemar’s test (H0: odds ratio = 1)
• For rare disease OR  RR
• Fisher’s exact test
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Types of Categorical Data

•Nominal

•Ordinal 

Often we wish to assess whether two factors are related. To 
do so we construct an R x C table that cross-classifies the 
observations according to the two factors. Such a table is 
called a contingency table.

We can test whether the factors are “related” using a 2 test. 

We will consider the special case of 2 x 2 tables in detail.

Categorical Data
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1) We sample members of 2 (or more) groups and classify each 
member according to some qualitative characteristic.

The hypothesis is

H0: groups are homogeneous (p1j=p2j for all j)

HA: groups are not homogeneous

Contingency tables arise from two different, but related, situations:

 Measurement of interest 
 1 2  3 4 5 total 
Group 1 p11 p12 … 1.0 
Group 2 p21 p22 … 1.0 

 

Categorical Data
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Example 1: From Doll and Hill (1952) - retrospective assessment 
of smoking frequency. The table displays the daily average number 
of cigarettes for lung cancer patients and control patients.

 Daily # cigarettes 
 None < 5  5-14 15-24 25-49 50+ Total
Cancer 7

0.5%
55

4.1%
489

36.0%
475

35.0%
293

21.6%
38

2.8%
1357

Control 61
4.5%

129
9.5%

570
42.0%

431
31.8%

154
11.3%

12
0.9%

1357

Total 68 184 1059 906 447 50 2714
 

Categorical Data
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2) We sample members of a population and cross-classify each 
member according to two qualitative characteristics.

The hypothesis is

H0: factors are independent (pij=pi.p.j )

HA: factors are not independent

Contingency tables arise from two different, but related, situations:

  Factor 1 
  1 2 3 4 Total 

1 p11 p12 p13 p14 p1. 

2 p21 …    
3 :     

 
Factor 2 

Total p.1     
 

Categorical Data
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Example 2. Education versus willingness to participate in a study of a 
vaccine to prevent HIV infection if the study was to start tomorrow. 
Counts, row percents and row totals are given.

definitely
not

probably
not

probably definitely Total

< high
school

52
7.4%

79
11.3%

342
48.9%

226
32.3%

699

high school 62
6.9%

153
17.1%

417
46.6%

262
29.3%

894

some
college

53
4.2%

213
16.8%

629
49.5%

375
29.5%

1270

college 54
4.9%

231
21.0%

571
51.9%

244
22.2%

1100

some post
college

18
6.5%

46
16.6%

139
50.2%

74
26.7%

277

graduate/
prof

25
4.1%

139
22.8%

330
54.1%

116
19.0%

610

Total 264
5.4%

861
17.8%

2428
50.1%

1297
26.7%

4850

Categorical Data
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In example 1 we want to test whether the smoking frequency is the 
same for each of the populations sampled. We want to test whether 
the groups are homogeneous with respect to a characteristic. The 
concept is similar to a t-test, but the response is categorical.

H0: smoking frequency same in both groups

HA: smoking frequency not the same

Q: What does H0 predict we would observe if all we knew were 
the marginal totals?

 Daily # cigarettes 
 None < 5  5-14 15-24 25-49 50+ Total
Cancer 1357

Control 1357

Total 68 184 1059 906 447 50 2714
 

Test of Homogeneity
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 Daily # cigarettes 
 None < 5  5-14 15-24 25-49 50+ Total
Cancer 34 92 529.5 453 223.5 25 1357

Control 34 92 529.5 453 223.5 25 1357

Total 68 184 1059 906 447 50 2714
 

A: H0 predicts the following expectations:

Each group has the same proportion in each cell as the overall 
marginal proportion. The “equal” expected number for each 
group is the result of the equal sample size in each group (what 
would change if there were half as many cases as controls?)

Test of Homogeneity
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Heuristically, if the Oij are “near” the Eij that seems consistent with 
Ho; if the Oij are “far” from Eij we might suspect Ho is not true.

The Pearson’s Chi-square Statistic (X2) measures the difference 
between the observed and expected counts and provides an overall 
assessment of Ho.

We have

• Observed counts, Oij

• Expected counts (assuming Ho true), Eij

   
2

2 2

,

X ~ ( 1) ( 1)
ij ij

i j ij

O E
r c

E



   

Chi-square distribution with (r-1)*(c-1) 
degrees of freedom (BM table D)

Test of Homogeneity
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Example 1. Smoking history vs lung cancer

. tabi 7 55 489 475 293 38 \ 61 129 570 431 154 12

|                          col
row |         1          2          3          4          5 |     Total

-----------+-------------------------------------------------------+----------
1 |         7         55        489        475        293 |     1,357 
2 |        61        129        570        431        154 |     1,357 

-----------+-------------------------------------------------------+----------
Total |        68        184      1,059        906        447 |     2,714 

|    col
row |         6 |     Total

-----------+-----------+----------
1 |        38 |     1,357 
2 |        12 |     1,357 

-----------+-----------+----------
Total |        50 |     2,714 

Pearson chi2(5) = 137.7193   Pr = 0.000

Conclusion?

Test of Homogeneity
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The Chi-squared Test of Independence is mechanically the same
as the test for homogeneity. The difference is conceptual - the R x 
C table is formed by sampling from a population (not subgroups) 
and cross-classifying the factors of interest. Therefore, the null and 
alternative hypotheses are written as:

H0: The two factors are independent

HA: The two factors are not independent

Independence implies that each row has the same relative 
frequencies (or each column has the same relative frequency).

Example 2 is a situation where individuals are classified according 
to two factors. In this example, the assumption of independence 
implies that willingness to participate doesn’t depend on the level 
of education (and visa-versa).

Test of Independence
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Q: Based on the observed row proportions, how does the 
independence hypothesis look?

Q: How would the expected cell frequencies be calculated?

Q: How many degrees of freedom would the chi-square have?

definitely
not

probably
not

probably definitely Total

< high
school

52
7.4%

79
11.3%

342
48.9%

226
32.3%

699

high school 62
6.9%

153
17.1%

417
46.6%

262
29.3%

894

some
college

53
4.2%

213
16.8%

629
49.5%

375
29.5%

1270

college 54
4.9%

231
21.0%

571
51.9%

244
22.2%

1100

some post
college

18
6.5%

46
16.6%

139
50.2%

74
26.7%

277

graduate/
prof

25
4.1%

139
22.8%

330
54.1%

116
19.0%

610

Total 264
5.4%

861
17.8%

2428
50.1%

1297
26.7%

4850

Test of Independence
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. tabi 52 79 342 226 \ 62 153 417 262 \ 53 213 629 375 \ 54 231 571 
244 \ 18 46 139 74 \ 25 139 330 116

|                     col
row |         1          2          3          4 |     Total

-----------+--------------------------------------------+----------
1 |        52         79        342        226 |       699 
2 |        62        153        417        262 |       894 
3 |        53        213        629        375 |     1,270 
4 |        54        231        571        244 |     1,100 
5 |        18         46        139         74 |       277 
6 |        25        139        330        116 |       610 

-----------+--------------------------------------------+----------
Total |       264        861      2,428      1,297 |     4,850 

Pearson chi2(15) =  89.7235   Pr = 0.000

Conclusion?

Test of Independence
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1. Tests of homogeneity of a factor across groups or 
independence of two factors rely on Pearson’s X2 statistic.

2. X2 is compared to a ((r-1)x(c-1)) distribution (BM, table D 
or display chiprob(df,X2)).

3. Expected cell counts should be larger than 5.

4. We have considered a global test without using possible factor 
ordering. Ordered factors permit a test for trend (see Agresti, 
1990).

Summary
 Tests for R x C Tables
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Example 1:  Pauling (1971)

Patients are randomized to either receive Vitamin C or placebo.  
Patients are followed-up to ascertain the development of a cold.

Q: Is treatment with Vitamin C associated with a reduced 
probability of getting a cold?

Q: If Vitamin C is associated with reducing colds, then what is 
the magnitude of the effect?

 Cold - Y Cold - N Total
Vitamin C 17 122 139 

Placebo 31 109 140 

Total 48 231 279 
 

 

2 x 2 Tables
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Example 2:  Keller (AJPH, 1965)

Patients with (cases) and without (controls) oral cancer were 
surveyed regarding their smoking frequency (note: this table 

collapses over the smoking frequency categories shown in Keller).

Q: Is oral cancer associated with smoking?

Q: If smoking is associated with oral cancer, then what is the 
magnitude of the risk?

 Case Control Total
Smoker 484 385 869 

Non-Smoker 27 90 117 

Total 511 475 986 
 

 

2 x 2 Tables
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Example 3: Norusis (1988)

In 1984, a random sample of US adults were cross-classified
based on their income and reported job satisfaction:

Q: Is salary associated with job satisfaction?

Q: If salary is associated with satisfaction, then what is the
magnitude of the effect?

Dissatisfied Satisfied Total
< $15,000 104 391 495

 $15,000 66 340 406

Total 170 731 901

2 x 2 Tables
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Example 4: Sartwell et al (1969)

Is oral contraceptive use associated with thromboembolism? 175
cases with blood clots of unknown origin were matched to
controls based on age, race, time and place of hospitalization,
parity, marital status and SES.

Q: Is OC use associated with thromboembolism?

Q: If OC use is associated with thromboembolism then what is
the magnitude of the effect?

Control OC 
Use

Yes No

Case OC
Use

Yes 10 57

No 13 95

2 x 2 Tables
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Each of these tables can be represented as follows:

The question of association can be addressed with Pearson’s
X2 (except for example 4)  We compute the expected cell 
counts as follows:

Expected:
 D not D Total 
E n1m1/N n1m2/N (a + b) = n1 

not E n2m1/N n2m2/N (c + d) = n2 

Total (a + c) = m1 (b + d) = m2 N 
 

 

 D not D Total 
E a b (a + b) = n1 

not E c d (c + d) = n2 

Total (a + c) = m1 (b + d) = m2 N 
 

 

2 x 2 Tables
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Recall, Pearson’s chi-square is given by:

Q: How does this X2 test in Example 1 compare to simply using the 2 
sample binomial test of

Q: How does the X2 test in Example 2 compare to simply using the 2 
sample binomial test of 

 
4

22

1

/i i i
i

X O E E


 

?)|()|(:0 EDPEDPH 

0 : ( | ) ( | )?H P E D P E D

2 x 2 Tables
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Example 1:  Pauling (1971)

H0 :  probability of disease does not depend on treatment 
HA : probability of disease does depend on treatment 

 Cold - Y Cold - N Total
Vitamin C 17 122 139 

Placebo 31 109 140 

Total 48 231 279 
 

 

2 x 2 Tables – Prospective study
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. csi 17 31 122 109

|   Exposed   Unexposed  |      Total
-----------------+------------------------+------------

Cases |        17          31  |         48
Noncases |       122         109  |        231

-----------------+------------------------+------------
Total |       139         140  |        279

:
:
:
chi2(1) =     4.81  Pr>chi2 = 0.0283

The X2 value is 4.81 and the p-value is P(2(1) > 4.81) = 0.028.  
Therefore, using α = .05, we reject the hypothesis that the risk of 
disease is equal in both treatment groups and conclude that vitamin 
C is protective.

2 x 2 Tables – Prospective study
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How does this compare to the two sample test of binomial 
proportions?

. prtesti 139 .1223 140 .2214

Two-sample test of proportion                      x: Number of obs =      139
y: Number of obs =      140

------------------------------------------------------------------------------
Variable |       Mean   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
x |      .1223   .0277894                      .0678338    .1767662
y |      .2214   .0350899                      .1526251    .2901749

-------------+----------------------------------------------------------------
diff |     -.0991    .044761                       -.18683     -.01137

|  under Ho:   .0451895    -2.19   0.028
------------------------------------------------------------------------------

diff = prop(x) - prop(y)                                  z =  -2.1930
Ho: diff = 0

Ha: diff < 0                 Ha: diff != 0                 Ha: diff > 0
Pr(Z < z) = 0.0142         Pr(|Z| < |z|) = 0.0283          Pr(Z > z) = 0.9858

Therefore, we reject H0 with the exact same result as the 2

test. (Note: 2.192 = 4.81)
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Example 1 fixed the number of E and not E, then evaluated the disease 
status after a fixed period of time.  This is a prospective study.  Given 
this design we can estimate the relative risk:

The range of RR is [0, ).  By taking the logarithm, we have (- , +) as 
the range for ln(RR) and a better approximation to normality for the 
estimated ln  :ˆRR
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2 x 2 Tables – Prospective Study
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The estimated relative risk is:

We can obtain a confidence interval for the relative risk by first obtaining
a confidence interval for the log RR. For Example 1, a 95% confidence
interval for the log relative risk is given by:

 
 

ˆ | 17 /139ˆ
ˆ 31/140|

0.55

P D E
RR

P D E
 



 

 
     14031

109
13917

122
96.155.0ln

ˆ
ˆ1

ˆ
ˆ1

96.1ˆln
22

2

11

1









np

p

np

p
RR

 Cold - Y Cold - N Total
Vitamin C 17 122 139 

Placebo 31 109 140 

Total 48 231 279 
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The resulting 95% CI for the log RR is 

-0.593  ± 1.96 × 0.277
-0.593  ± 0.543
(-1.116, -0.050)

To obtain a 95% confidence interval for the relative risk we
exponentiate the end-points of the interval for the log - relative risk.
Therefore,

( exp(-1.116), exp(-0.050))

( .33  ,  .95  )

is a 95% confidence interval for the relative risk.
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. csi 17 31 122 109

|   Exposed   Unexposed  |      Total
-----------------+------------------------+------------

Cases |        17          31  |         48
Noncases |       122         109  |        231

-----------------+------------------------+------------
Total |       139         140  |        279

|                        |
Risk |  .1223022    .2214286  |    .172043

|                        |
|      Point estimate    |    [95% Conf. Interval]
|------------------------+------------------------

Risk difference |        -.0991264       |   -.1868592   -.0113937 
Risk ratio |         .5523323       |    .3209178    .9506203 

Prev. frac. ex. |         .4476677       |    .0493797    .6790822 
Prev. frac. pop |         .2230316       |

+-------------------------------------------------
chi2(1) =     4.81  Pr>chi2 = 0.0283

2 x 2 Tables – Prospective Study
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In Example 2 we fixed the number of cases and controls then 
ascertained exposure status (i.e. we measured P(E|D)).  Such a 
design is known as case-control study.  Based on this we are able 
to estimate P(E|D) but not P(D|E). That means we can’t (directly) 
estimate the relative risk .  

However, we can estimate the exposure odds ratio …

    
    

    
    EDPEDP

EDPEDP

DEPDEP

DEPDEP

|1/|

|1/|

|1/|

|1/|








… and Cornfield (1951) showed the exposure odds ratio is equivalent 
to the disease odds ratio…

    
    

| / 1 |

| / 1 |

P E D P E D
OR

P E D P E D






What’s 
an odds 
ratio?

That’s 
odd!

2 x 2 Tables – Case-Control Study
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… and, for rare diseases, P(D | E)  0 so that the disease odds ratio
approximates the relative risk!

 Case-Control data  able to estimate the exposure odds ratio 
exposure odds ratio equal to the disease odds ratio  for rare 
diseases, odds ratio approximates the relative risk.

    
    

 
 EDP

EDP

EDPEDP

EDPEDP

|

|

|1/|

|1/|





For rare diseases, the sample odds ratio 
approximates the population relative risk.

Odds Ratio
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Disease prevalence

Odds Ratio Relative Risk

0 .1 .2 .3 .4
2

4

6
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Like the relative risk, the odds ratio has [0, ) as its range. The log
odds ratio has (- , +) as its range and the normal distribution is
a good approximation to the sampling distribution of the estimated
log odds ratio.

Confidence intervals are based upon:

Therefore, a (1 - ) confidence interval for the log odds ratio is
given by:
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2 x 2 Tables – Case-Control Study
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. cci 484 27 385 90
Proportion

|   Exposed   Unexposed  |      Total     Exposed
-----------------+------------------------+------------------------

Cases |       484          27  |        511       0.9472
Controls |       385          90  |        475       0.8105

-----------------+------------------------+------------------------
Total |       869         117  |        986       0.8813

|                        |
|      Point estimate    |    [95% Conf. Interval]
|------------------------+------------------------

Odds ratio |         4.190476       |    2.633584    6.836229 (exact)
Attr. frac. ex. |         .7613636       |    .6202893    .8537205 (exact)
Attr. frac. pop |          .721135       |

+-------------------------------------------------
chi2(1) =    43.95  Pr>chi2 = 0.0000

2 x 2 Tables – Case-Control Study
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1. What is the outcome of interest? (i.e. disease)

2. What are the two groups being contrasted? (i.e. exposed and 
unexposed)

odds of OUTCOME in EXPOSED
OR 

odds of OUTCOME in UNEXPOSED


• Similar to RR for rare diseases

• Meaningful for both cohort and case-control studies

• OR > 1  increased odds of OUTCOME with EXPOSURE

• OR < 1  decreased odds of OUTCOME with EXPOSURE

Interpreting Odds ratios
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Be aware of how the table is laid out …

 Case Control Total
Non-Smoker 27 90 117 

Smoker 484 385 869 

Total 511 475 986 
 

 

Odds ratio = .239    Interpret.

Interpreting Odds ratios
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Example 3 is an example of a cross-sectional study since only the 
total for the table is fixed in advance.  The row totals or column totals 
are not fixed in advance. 

Either the relative risk or odds ratio may be used to summarize the 
association when using a cross-sectional design.  

The major distinction from a prospective study is that a cross-
sectional study will reveal the number of cases currently in the 
sample.  These are known as prevalent cases.  In a prospective study 
we count the number of new cases, or incident cases.

Study Probability Description 
Cohort incidence probability of 

obtaining the disease
Cross-sectional prevalence probability of having 

the disease 
 

 

2 x 2 Tables – Cross-sectional Study
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. csi 104 391 66 340, or

|   Exposed   Unexposed  |      Total
-----------------+------------------------+------------

Cases |       104         391  |        495
Noncases |        66         340  |        406

-----------------+------------------------+------------
Total |       170         731  |        901

|                        |
Risk |  .6117647    .5348837  |   .5493896

|                        |
|      Point estimate    |    [95% Conf. Interval]
|------------------------+------------------------

Risk difference |          .076881       |   -.0048155    .1585775 
Risk ratio |         1.143734       |    .9967902     1.31234 

Attr. frac. ex. |         .1256708       |   -.0032201    .2380023 
Attr. frac. pop |         .0264036       |

Odds ratio |         1.370224       |    .9752222    1.925102 (Cornfield)
+-------------------------------------------------

chi2(1) =     3.29  Pr>chi2 = 0.0696

2 x 2 Tables – Cross-sectional Study
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Motivation:  When a 2  2 table contains cells that have fewer 
than 5 expected observations, the normal approximation to the 
distribution of the log odds ratio (or other summary statistics) 
is known to be poor.  This can lead to incorrect inference since 
the p-values based on this approximation are not valid.

Solution: Use Fisher’s Exact Test

D+ D- Total
E+ n1

E- n2

Total m1 m2 N

Fisher’s Exact Test
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Example: Cardiovascular disease.  A retrospective study is 
done among men aged 50-54 who died over a 1-month period.  
The investigators tried to include equal numbers of men who 
died from CVD and those that did not.  Then, asking a close 
relative, the dietary habits were ascertained.

A calculation of the odds ratio yields:

Interpret.

 High Salt Low Salt Total
non-CVD 2 23 25 

CVD 5 30 35 

Total 7 53 60 
 

2 30
OR 0.522

5 23


 



Fisher’s Exact Test
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Example: Cardiovascular disease.

If we consider the margins fixed, there are only a limited number of
possible tables. Using the hypergeometric distribution, “we” can
compute the probability of each table under Ho.

Possible Tables (with probability under Ho):

0 25
35

7 53 60

1 25

35
7 53 60

2 25
35

7 53 60

3 25
35

7 53 60

4 25
35

7 53 60

5 25
35

7 53 60

6 25
35

7 53 60

7 25
35

7 53 60

.017 .105 .252 .312

.214 .082 .016 .001

Fisher’s Exact Test
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To compute a p-value we then use the usual approach of summing 
the probability of all events (tables) as extreme or more extreme 
than the observed data. 

•For a one tailed test we sum the probabilities of all tables with 
a less than or equal to (greater than or equal to) the observed 
a. 

•For a two-tailed test of p1 = p2 we sum all tables that are less 
likely than the observed.

You will never do this by hand …. 

Fisher’s Exact Test
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. cci 5 30 2 23,exact
Proportion

|   Exposed   Unexposed  |      Total     Exposed
-----------------+------------------------+------------------------

Cases |         5          30  |         35       0.1429
Controls |         2          23  |         25       0.0800

-----------------+------------------------+------------------------
Total |         7          53  |         60       0.1167

|                        |
|      Point estimate    |    [95% Conf. Interval]
|------------------------+------------------------

Odds ratio |         1.916667       |    .2789585    21.62382 (exact)
Attr. frac. ex. |         .4782609       |   -2.584763    .9537547 (exact)
Attr. frac. pop |          .068323       |

+-------------------------------------------------
1-sided Fisher's exact P = 0.3747
2-sided Fisher's exact P = 0.6882

Fisher’s exact test.

Fisher Exact test using Stata
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. cci 5 30 2 23
Proportion

|   Exposed   Unexposed  |      Total     Exposed
-----------------+------------------------+------------------------

Cases |         5          30  |         35       0.1429
Controls |         2          23  |         25       0.0800

-----------------+------------------------+------------------------
Total |         7          53  |         60       0.1167

|                        |
|      Point estimate    |    [95% Conf. Interval]
|------------------------+------------------------

Odds ratio |         1.916667       |    .2789585    21.62382 (exact)
Attr. frac. ex. |         .4782609       |   -2.584763    .9537547 (exact)
Attr. frac. pop |          .068323       |

+-------------------------------------------------
chi2(1) =     0.56  Pr>chi2 = 0.4546

The usual chi-squared test, 
for comparison.

Fisher Exact test using Stata
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Example 4 measured a binary response on matched pairs.  This is an 
example of paired binary data.  One way to display these data is the 
following:

Q: Can’t we simply use X2 Test of Homogeneity to assess whether 
this is evidence for an increase in knowledge?

A: NO!!!  The X2 tests assume that the rows are independent
samples.  In this design, the controls are constrained to be similar to 
the controls in many respects.

 OC No OC Total
Case 67 108 175 
Control 23 152 175 

Total 90 260 350 
 

 

Paired Binary Data
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For paired binary data we display the results as follows:

This analysis explicitly recognizes the heterogeneity of subjects.  Thus, 
those that score (0,0) and (1,1) provide no information about the effect of 
OC use since they may be “weak” or “strong” individuals.  These are 
known as the concordant pairs.  The information regarding OC use is in 
the discordant pairs, (0,1) and (1,0).

p1 =  “success” probability for cases
p2 =  “success” probability for controls

H0 : p1 = p2

HA : p1  p2

Control OC

Yes No

Case OC
Yes n11 n10

No n01 n00

Paired Binary Data
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Under the null, H0 :  p1 = p2, we expect equal numbers of “01” and “10” 
discordant pairs (i.e., E[n01] = E[n10]).  Specifically, under the null:

Under H0,  Z2 ~ 2(1), and forms the basis for McNemar’s Test for 
Paired Binary Responses.

The odds ratio comparing the odds of OC use for cases to OC use for 
controls is estimated by:

Confidence intervals: see Breslow and Day (1981), sec. 5.2, or Armitage and Berry (1987), chap. 16.

 

01 10
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1
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Paired Binary Data - McNemar’s Test
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Example 4:

We can test H0:  p1 = p2 using McNemar’s Test:

Comparing 5.262 to a 2 (1) we find that p < 0.001.  Therefore we 
reject the null hypothesis of equal OC use probabilities for cases and 
controls.

We estimate the odds ratio as 

 
 

1
01 2

1 1
2 2

13 13 57 / 2

(13 57) / 4

5.26

n M
Z

M




 






ˆ 57 /13 4.38.OR  

Control OC

Yes No

Case OC
Yes 10 57

No 13 95
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. mcci 10 57 13 95

| Controls               |
Cases            |   Exposed   Unexposed  |      Total
-----------------+------------------------+------------

Exposed |        10          57  |         67
Unexposed |        13          95  |        108

-----------------+------------------------+------------
Total |        23         152  |        175

McNemar's chi2(1) =     27.66    Prob > chi2 = 0.0000
Exact McNemar significance probability       = 0.0000

Proportion with factor
Cases       .3828571
Controls    .1314286     [95% Conf. Interval]

--------- --------------------
difference  .2514286      .1597329   .3431243
ratio       2.913043      1.918355   4.423488
rel. diff.  .2894737      .1985361   .3804113

odds ratio  4.384615      2.371377   8.731311   (exact)

Matched case-control data in Stata
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Paired data analyses arise in a number of situations …

• Matched case-control studies (as above)

• Repeated tests on an individual over time (e.g. before-after)

• Paired observations on an individual (e.g. two eyes)

• Twin studies

• Other …

Paired Binary Data
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•Cohort Analysis (Prospective)
1. H0:
2. RR for incident disease
3. 2 test (or Fisher’s Exact)

•Case Control Analysis (Retrospective)
1. H0: 
2. OR ( RR for rare disease)
3. 2 test (or Fisher’s Exact)

•Cross-sectional Analysis 
1. H0: 
2. RR for prevalent disease
3. 2 test (or Fisher’s Exact)

•Paired Binary Data
1. H0: 
2. OR
3. McNemar’s test (or exact Binomial)

)|()|( EDPEDP 

)|()|( EDPEDP 

)|()|( EDPEDP 

)|()|( DEPDEP 

Summary for 2 x 2 Tables
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2 test  for 
R x C table

2 x 2 ?

2 x k ?

NoYes

NoYes

Samples 
independent?

McNemar’s 
test

NoYes

Test for trend in 
proportions?

NoYes

Expected > 5?
Fisher’s 
exact test

No

Yes
No

2 test 

Expected > 5?

Yes

2 test  for 
trend

2 sample Z test 
for proportions or 

2 test 

Exact  test

Categorical data -summary
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Inference in Correlation and Linear 
Regression

Correlation
Pearson’s, Spearman’s
Hypothesis test for 

Linear Regression
Summarize linear association
Prediction

Hypothesis testing for regression parameters
Confidence intervals

parameters
fitted values
new observation (prediction interval)

Sums of Squares
Regression SS, Residual SS, Total SS, R2

Assumptions in linear regression
Linearity
Independence
Normality
Equal variances

Model Checking
Checking systematic component (linearity)
Checking the random component (normality, equal variance)
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Contains data from bodyfat.dta        obs:           252                          

1. density   float  %9.0g                  Density determined from
underwater weighing

2. pctfat    float  %9.0g                  Percent body fat from Siri's
(1956) equation

3. age       float  %9.0g                  Age (years)
4. weight    float  %9.0g                  Weight (lbs)
5. height    float  %9.0g                  Height (inches)
6. neck      float  %9.0g                  Neck circumference (cm)
7. chest     float  %9.0g                  Chest circumference (cm)
8. abdomen   float  %9.0g                  Abdomen 2 circumference (cm)
9. hip       float  %9.0g                  Hip circumference (cm)

10. thigh     float  %9.0g                  Thigh circumference (cm)
11. knee      float  %9.0g                  Knee circumference (cm)
12. ankle     float  %9.0g                  Ankle circumference (cm)
13. biceps    float  %9.0g                  Biceps (extended)

circumference (cm)
14. forarm    float  %9.0g                  Forearm circumference (cm)
15. wrist     float  %9.0g                  Wrist circumference (cm)

Body Fat Dataset
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Density determined from
underwater weighing
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We want to measure the “strength of association” between two 
(quantitative) variables. For this purpose, we will use the 
correlation coefficient.
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Correlation
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The correlation between two variables X and Y is defined as:

Properties:

• Symmetric – no distinction between X and Y

• The correlation is constrained: -1    +1

• |  | = 1 means “perfect linear relationship”:

Y = a + bX

• The correlation is a scale free measure.

• We estimate the correlation as:

   
   YVXV

YXE YX  

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X Y
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i ii=1

X Y

X -X Y -Y1
R=

n-1 s s

X Y nXY1
=

n-1 s s







Pearson’s Correlation Coefficient
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To test the hypothesis:

H0 :   = 0
HA :    0

We use the statistic:

Under the null hypothesis:

T ~ t(n - 2)

which forms the basis for testing.

NOTE: For the validity of the test we assume that both X and Y 
are normally distributed (bivariate normality).

2
 2

1

R
T n

R
 



Inference for Pearson’s Correlation Coefficient
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E.g. Knee circumference and thigh circumference

n = 252

R = 0.799

H0 :   = 0
HA :    0

21
799.1

799.
2252

1
2

  
2

2









R

R
nT

Conclusion: reject H0 with p < .0001

Inference for Pearson’s Correlation Coefficient
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. pwcorr knee thigh, sig

|     knee    thigh
-------------+------------------

knee |   1.0000 
|
|

thigh |   0.7992   1.0000 
|   0.0000

Inference for Pearson’s Correlation Coefficient
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• A nonparametric analogue to Pearson’s correlation coefficient 
is Spearman’s rank correlation coefficient. Use Spearman’s 
correlation when the assumption of (bivariate) normality is 
not met.

• A measure of monotonic association (not necessarily linear)

• Based on the ranked data

• Rank each sample separately

• Compute Pearson’s correlation on the ranks

• -1 < Rs < 1

• )2(~
1

2  
2




 nt
R

R
nT

s

s

Spearman Rank Correlation
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. spearman knee thigh

Number of obs =     252
Spearman's rho =       0.7699

Test of Ho: knee and thigh are 
independent

Prob > |t| =       0.0000

Spearman Rank Correlation
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What happens if we restrict the range of the data for one or the 
other variables when computing correlation?

E.g. knee circumference vs thigh circumference

range R p

All .80 <.001

knee < 45 .78 <.001

knee < 40 .68 <.001

knee < 35 .19 .48

Correlation – Restricted Range
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The correlation coefficient was used to summarize the strength 
of the relationship between interchangeable X and Y. 

Sometimes, however, X and Y are not interchangeable. We 
may want to predict Y from X. 

Linear Regression
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 If a scatterplot suggests a linear relationship between X and Y we can draw a 
linear regression line to describe how the mean of Y changes differs when X 
changes differs or to predict the mean of Y for any given value of X.

 In linear regression one variable (X) is used to predict or explain another (Y) 
(the situation is asymmetric).

X  independent, predictor   Y dependent, response

We assume that we collect a sample of pairs of observations,

(Xi, Yi)  for  i = 1, 2,…, n

Note: here, X and Y are both quantitative; more generally, X need not be.

Modeling the relationship between X and Y requires the specification of two 
components:

• Systematic Component

• Random Component

Linear Regression
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Systematic component:

E(Yi | Xi) =  + Xi

“expected (mean) population value of Y at Xi”

 = intercept = value of mean of Y when X = 0

 = slope = expected change difference in mean of Y for each 1 unit 
change difference in X

X

Y





0

Assumptions for Linear Regression
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                   beta positive

y
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x
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                   beta negative
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                      beta zero
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                   nonlinear

y
4

x
-2 -1 0 1 2
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0
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4

6

Examples of Systematic component
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Random part:

1. Equal variance (i.e. variance doesn’t depend on X)

2. Responses are independent.

Yi , Yj (actually, i , j ) are independent for all i, j.

3. “Errors” are normally distributed.

 i i i i

i i

Y = E Y |X +ε

= α+βX +ε

  2)(|   iii VXYV

 2 ,0 ~  Ni

Assumptions for Linear Regression
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          normal errors (var = 1.0)

y
1

x
-2 -1 0 1 2

-5

0

5

          normal errors (var = 0.1)
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          variance depends on x
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                nonnormal errors

y
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-5

0

5

Assumptions for Linear Regression
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. summarize abdomen

Variable |     Obs        Mean   Std. Dev.       Min        Max
---------+-----------------------------------------------------
abdomen |     252    92.55595   10.78308       69.4      148.1  

. regress pctfat abdomen

Source |       SS       df       MS                  Number of obs =     252
---------+------------------------------ F(  1,   250) =  488.93

Model |  11631.5264     1  11631.5264               Prob > F      =  0.0000
Residual |  5947.46321   250  23.7898528               R-squared     =  0.6617
---------+------------------------------ Adj R-squared =  0.6603

Total |  17578.9896   251   70.035815               Root MSE      =  4.8775

------------------------------------------------------------------------------
pctfat |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]

---------+--------------------------------------------------------------------
abdomen |   .6313044   .0285507     22.112   0.000       .5750739    .6875349

_cons |  -39.28018   2.660337    -14.765   0.000      -44.51971   -34.04065
------------------------------------------------------------------------------
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Y = -39.28 + .6312 X

Note: line is only drawn within the 
range of the observed data.

Leverage 
point
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Given the estimates (a, b) we can find the predicted value,     ,  for 
any value of Xi.

The interpretation of       is as the estimated mean value of Yi for a 
large sample of values taken at X = Xi. 

iŶ

i iŶ =a+bX

iŶ

e
r
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 f
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fr
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 S
ir
i'

Abdomen circumference (cm)
65 150

0

20

40

60

Predicted body fat when abdominal circumference is 90 cm
= -39.28 + .6312*90 = 17.53 percent

= -39.28 + .6312 XŶ

Regression - Predicted Values
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We also wish to estimate 2. Recall that 2 = Var(i). We call the i

the “residuals”.

We don’t know the i exactly since these are based on  and . BUT, 
we do have a reasonable estimate based on a and b:

ri = Yi - a – bXi

= Yi -

Since the average of the ri is 0 (guaranteed by least squares), a 
reasonable estimate of 2 is

2

)(

2
ˆ

22

2



 







n

bXaY

n

r
i

ii
i

i



We will also use the estimated residuals to assess the adequacy 
of our model. 

iŶ

Regression - Residuals
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For the simple linear model we can test hypotheses regarding :
H0 :   = 0
HA :    0

using a standardized test statistic:

Similarly, hypotheses about  (less common):
H0 :   = 0
HA :    0

are based on the test statistic:

We just need estimates of V(a) and V(b)…

b-0
T=

V(b)

a-0
T=

V(a)

Inferences about Regression Parameters
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The variance of the estimated regression coefficients                         is 
given by:

where and we replace  by its estimate.

 

 

2

2

xx

2

xx

1 X
V a =σ +

n L

1
V b =σ

L

 
 
 
 
 
 
 

 2
2

1

( 1)
n

xx i x
i

L X X n s


   

computer does 
these calculations

ˆˆ( ,   b )a   

Inferences about Regression Parameters
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Bodyfat example:  Regress abdominal fat (Y) on abdomen circum (X).

2
xx

a = -39.28
b = 0.6312
σ̂ = 4.877

L = 251*10.78  = 29184.5

Ho:  = 0

Ha:   0

1.22

29184.5
1

4.877

0-.6312
  T 

Conclusion?

(see Stata
output on page 

420)

NOTE: The tests for Ho:=0 and Ho:=0 are mathematically equivalent.

Inferences about Regression Parameters
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Given that the errors i are independent, have equal variances,
and are normally distributed, then:

Since  is unknown, confidence intervals for the regression
parameters use the t(n - 2) distribution:








































xx

xx

L
Nb

L

X

n
Na

1
  ,~

1
  ,~

2

2
2





2

1- 2

1- 2

1
ˆCI for :         t ( 2)

1
ˆCI for :       t ( 2)

xx

xx

X
a n

n L

b n
L





 

 

   

  

Confidence Intervals  for Regression Parameters
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Bodyfat example:  (n = 252)

5.29184

877.4ˆ

6312.0

28.39









xxL

b

a



A 95% confidence interval for  is 

0.6312 ± 1.97*4.877*sqrt(1/29184.5)

(.575,.687)

Confidence Intervals  for Regression Parameters
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The predicted value,       is the estimated mean response at Xi and is 
estimated as:

Further

so, a confidence interval for E (Yi | Xi ) =  +  Xi is given by:

iŶ ,

i iŶ  = a+bX

   









 


xx

i
ii L

XX

n
XYV

2
2 1

ˆ|ˆˆ 

i α i i1- 2

ˆ ˆ ˆY  ± t (n-2)× V(Y |X )

Confidence Intervals  for Predicted Means
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Bodyfat example: (n = 252)

Consider the mean bodyfat for an abdomen circumference of 100 cm:

5.29184

56.92

877.4ˆ

6312.0

28.39








xxL

X

b

a



i iŶ  = a + b×X

= -39.28 + 0.6312×100 = 23.82

   

   

2

i2
i i

xx

2
2

X -X1ˆ ˆ ˆV Y |X  = σ  + 
n L

100-92.561
= 4.877  +  = 0.139

252 29184.5

 
 
  
 

 
 
 
 

Confidence Intervals for Predicted Means
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Thus a 95% confidence interval for E (Yi | X = 100) is:

α1 - 2
t ( n - 2 )  =  1 . 9 7

 2

1- 2

1ˆ ˆ t ( 2)
i

i
xx

X X
Y n

n L 


   

 56.24  23.08,  

74.023.82 

0.1391.9723.82  





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pctfat=-39.2802+.631304abdomen

Abdomen circumference (cm)
50 100 150

0

20

40

60

Confidence Intervals for Predicted Means
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The confidence interval for E(Y|X) that we have developed gives us 
an interval that we expect the (population) mean of Y at X to fall 
in.

Suppose that we wanted an interval (range of values) that we would 
expect a single “new” observation to fall in… 

 How should the prediction of an single new observation at X = 100 
(say) compare to the prediction of the mean of all observations at X 
= 100 (same, higher, lower)?

 How should the uncertainty about the prediction of an single new 
observation at X = 100 (say) compare to the uncertainty about the 
prediction of the mean of all observations at X = 100 (same, higher, 
lower)?

Prediction Intervals
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Thus, for an individual observation the interval:

is a (1 - ) prediction interval for a new observation taken at Xi.  

 
 

 

2

i

i α1- 2
xx

2

i

i α1- 2
xx

X -X1
ˆa+bX  ± t (n-2)×σ 1+ +

n L

X -X1ˆ ˆ            Y  ± t (n-2)×σ 1+ +
n L

In predicting a single new observation we have the uncertainty about the 
population mean PLUS the intrinsic variability of individual 
observations (2). The variability in predicting a single new observation 
is the sum of these:

2
single mean

2
2

xx

ˆ ˆVar(Y ) =  σ +Var(Y )

1 (X-X)
=  σ 1+ +

n L

 
 
 

Prediction Intervals
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Bodyfat example: (n = 252)

Consider an individual bodyfat measurement for a new individual with
an abdomen circumference of 100cm:

A 95% prediction interval is given by

5.184,29

56.92

877.4ˆ

6313.0

28.39








xxL

X

b

a



iŶ = a + b×100 = 23.82

 2

      

100 92.561
23.82     1.97 4.877 1

252 29,184.5

23.82     9.64

( 14.18  ,  33.46)


   



 2

1- 2

1ˆ ˆ    t ( 2) 1
i

i
xx

X X
Y n

n L 


    

Prediction Intervals
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pctfat=-39.2802+.631304abdomen

Abdomen circumference (cm)
50 100 150

-20

0

20

40

60

Prediction Intervals
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. use “bodyfat.dta", clear

. edit // add “fake” observations

. reg pctfat abdomen

. predict fathat // gives E(Y|X)

. predict sefathat, stdp // gives (se for) CI for E(Y|X)

. predict senew, stdf // gives (se for) PI

. list pctfat abdomen fathat sefathat senew if abdomen==100

pctfat   abdomen         fathat     sefathat        senew 

253.        .             100   23.85025   .3735964   4.891771

To get confidence intervals on predicted values and prediction 
intervals, first edit the dataset to add the X values you want (leave Y 
missing), then fit the regression, and use predict.
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It can also be shown that

 
2

1
 


n

i
i YY

 
2
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ˆ 


n

i
ii YY

 
2

1

ˆ 


n

i
i YY

     
2

1

2

1

2

1

ˆˆ    


n

i
i

n

i
ii

n

i
i YYYYYY

= Total SS - describes the total variation of the 
Yi

= Error SS - describes the variation of the Yi 

around the regression line.

= Model SS - describes the structural 
variation; how much of the variation is due 
to the regression relationship.

It is clear that
     YYYYYY iiii  ˆˆ

Sum of Squares (SS)
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Y

X

Total SS 
(Total variation in Y) =

Model SS
(Variation in Y due to X)

+

Error SS
(Variation in Y around the line)

Fall 2013 Biostat 511 450

Total SS = Model SS + Error SS
This decomposition allows a characterization of the usefulness of the 
covariate X in predicting the response variable Yi. 

Q: If you didn’t know X, what would you predict for mean of Y?
A:

Q: How much unexplained variation is left after you make that prediction?
A: Total SS

Q: What did we gain by using X?
A: The proportion of the Total variation that can be explained by the 

regression of Y on X is R2 = Model SS/Total SS

Alternatively, we can say that the unexplained (residual) variation 
decreased by a proportion R2 (i.e. R2 = 1- Error SS/Total SS)

This R2 is, in fact, the correlation coefficient squared.

Y

R2
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Examples of R2
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Given the data Yi and the fitted values,     ,we define the residual as:

This captures the component of the measurement Yi that cannot be 
“explained” by Xi. We will use the residuals to assess our model in 
terms of the adequacy of both the systematic and random components.

Assumptions and Diagnostics

iŶ

i i i
ˆr  = Y  - Y

Assumption Model Checking 
Linearity  residual vs X or Ŷ  

Q:  Is there any trend? 

Independence Q:  Any scientific concerns? 

Normality  residual histogram / qq-plot
Q:  Symmetric?  Normal? 

Equal Variance  residual vs X or  
Q:  Is there any pattern? 

  
 

 

Ŷ

Regression - Model Checking
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pctfat=-39.2802+.631304abdomen
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fitted model

plot residuals vs prediction

True model: y = x^1.7
y=-1.41459+2.67191x
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y= .109399+.92083x

x
0 1 2 3 4
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y= .109399+.92083x
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Fitted values
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True model: y = x + errors increasing with x
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• Let ri be the i’th ordered residual (smallest to largest)

• Let pi be the percentile of the i’th ordered residual. pi = i/(n+1)

• Plot ri versus E(ri) = sr  Zpi

• If residuals are normal, plot should be a straight line

R
e
s
id

u
a
ls

Inverse Normal
-20 -10 0 10 20

-20

-10

0

10

20

E.g. Bodyfat vs abdominal circumference

Quantile-Quantile plot (QQplot)
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QQplots from known normal (n= 100)
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y= .141475+.997699x
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True model: y = x + chi-squared errors

QQ plot
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Nonlinearity:

1. Estimates - rubbish.   Biased estimation.

2. Tests/CIs - also rubbish.  Systematic deviations spill over into 
estimates of variability.

3. Correction - transform or choose a nonlinear model.

Nonnormality:

1. Estimates - effect is minimal for most departures.  Outliers can be a 
disaster.  If points exist far from the main body of X values, they can 
exert undue influence on estimates (particularly      ).

2. Tests/CIs - again minimal for most departures

3. Correction - delete outliers (if warranted) or nonparametric 
regression.

̂

Impact of Violations
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Unequal Variances:

1. Estimates - minimal impact.   (still unbiased, consistent)

2. Tests/CIs - variance estimates are wrong, but the effect is usually 
not dramatic.

3. Correction - transform or weighted least squares.

Dependence:

1. Estimates - range of possibilities, but often the estimates are 
unbiased.

2. Tests/CIs - variance estimates are wrong.  Often they will 
overestimate the precision and inflate test statistics (p-values too 
small).

3. Correction - regression for dependent data.

Impact of Violations
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Summary

Correlation
Pearson’s
Spearman’s
Hypothesis test for 

Purposes of Linear Regression
Summarize linear association
Prediction

Assumptions in linear regression
Linearity
Independence
Normality
Equal variances

Fitting a linear regression
Least squares

Fall 2013 Biostat 511 462

Hypothesis testing for regression parameters
t test - single parameter

Confidence intervals
parameters
fitted values
new observation (prediction interval)

Sums of Squares
Regression SS
Residual SS
Total SS
R2

Model Checking…
Checking systematic component
Checking the random component
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Anscombe’s Quartet (1973)

• Statistician Francis Anscombe created four datasets with
nearly identical simple statistical properties. He used the
illustration to demonstrate the effects of outliers and
non-linear patterns.

• And to warn us of the importance of graphing our data! 

Model Checking…
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Anscombe’s Quartet (1973)

Each	of	the	four	dataset	has	the	following	summaries:

• E Y ൌ 3 ൅ 5	X ሺ2‐3	decimal	placesሻ

• Xഥ ൌ 9 ሺexactሻ
• Yഥ ൌ	7.50		ሺ2	decimal	placesሻ
• Sx ൌ	11		ሺexactሻ
• Sy ൌ	4.12		ሺ2	decimal	placesሻ
• R	ൌ	0.816 ሺ2	decimal	placesሻ

Model Checking…
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Anscombe’s Quartet (1973)

Model Checking…


