Biostatistics 513

Homework 6 Solutions

1) a) from Dickson et al (1989) "the initial time point for survival modeling was the date of determination of eligibility for the trials"
b) an event is a death from any cause
c) censoring can be due to end of study (July, 1986; $n=160$), liver transplantation ($n=19$), or dropout ($\mathrm{n}=8$)
d) It is likely that censoring due to end of study is uninformative. Censoring due to dropout is unknown ... why did they dropout? Fortunately, the number of dropouts is small compared with the number of events (125 deaths) so it shouldn't have much effect. It is also unclear whether or not censoring due to liver transplantation is unrelated to risk of death. If liver transplants were done because these individuals were at particularly high risk of death, then this is informative censoring (that's bad); but if they received liver transplants simply because a liver became available (and they had been waiting a long time) then perhaps this cause of censoring is uninformative (that's good).
e) low is about 15% death; medium is about 50% death; high is about 80% death
2) Here's my table

Time (days)	At Risk	Died	Censored	Failure Probability $\mathrm{d}_{\mathrm{i}} / \mathrm{R}_{\mathrm{i}}$	Conditional Survival $\left(1-\mathrm{d}_{\mathrm{i}} / \mathrm{R}_{\mathrm{i}}\right)$	$\mathrm{K}-\mathrm{M}$ estimate $\prod\left(1-\mathrm{d}_{\mathrm{i}} / \mathrm{R}_{\mathrm{i}}\right)$
t_{i}	R_{i}	d_{i}	${l_{\mathrm{i}}}{ }^{2}$	12	1	0
.0833	.9167	.917				
53	11	1	0	.0909	.9091	.833
57	10	1	0	.1000	.9000	.750
63	9	1	0	.1111	.8889	.667
81	8	1	0	.1250	.8750	.583
140	7	1	0	.1428	.8572	.500
176	6	1	0	.1667	.8333	.417
210	5	0	1	0	1	.417
252	4	1	0	.2500	.7500	.312
476	3	0	1	0	1	.312
524	2	1	0	.5000	.5000	.156
1037	1	0	1	0	1	.156

3) a) . summarize age year stage, detail
age

	Percentiles	Smallest		
1\%	41	41		
5\%	47	43		
10\%	49	45	Obs	90
25\%	57	47	Sum of Wgt.	90
50\%	65		Mean	64.61111
		Largest	Std. Dev.	10.79606
75\%	72	82		
90\%	78.5	84	Variance	116.5549
95\%	81	86	Skewness	-. 1316666
99\%	86	86	Kurtosis	2.243943

. tabu year

year of entry	Freq.	Percent	Cum.
70	2	2.22	2.22
71	12	13.33	15.56
72	9	10.00	25.56
73	11	12.22	37.78
74	14	15.56	53.33
75	8	8.89	62.22
76	19	21.11	83.33
77	11	12.22	95.56
78	4	4.44	100.00
Total	90	100.00	

. tabu stage

stage at diagnosis	Freq.	Percent	Cum.
1	33	36.67	36.67
2	17	18.89	55.56
3	27	30.00	85.56
4	13	14.44	100.00
Total	90	100.00	

b) . tabu status stage

Inspection of this table suggests that higher stage is associated with greater risk of death.
c). tabu year stage

year of	stage at diagnosis				
entry	1	2	3	4	Total
70	2	0	0	0	2
71	6	2	3	1	12
72	2	1	5	1	9
73	5	3	2	1	11
74	6	1	6	1	14
75	5	1	1	1	8
76	4	3	8	4	19
77	2	4	2	3	11
78	1	2	0	1	4
Total	33	17	27	13	90

Biostatistics 513

I don't see any obvious relationship between year and stage - i.e. no secular trends.
. sort stage
b by stage: summarize age
Variable |

Also, no obvious relationship between age and stage.
d)

Kaplan-Meier survival estimate

At $t=6$ the KM estimate of $S(t)$ is 0.49 . This is the estimated proportion of individuals with laryngeal cancer surviving at time 6 years following first treatment.
e)

Kaplan-Meier survival estimates, by stage34

It appears as though the prognosis is better for those diagnosed with stage 1 and 2 disease (i.e. stage $34=0$).
f)

The hypotheses are
Ho: $\mathrm{S}_{1 / 2}(\mathrm{t})=\mathrm{S}_{3 / 4}(\mathrm{t})$ (survival is the same in the two groups)
Ha: $\mathrm{S}_{1 / 2}(\mathrm{t}) \neq \mathrm{S}_{3 / 4}(\mathrm{t})$ (survival is not the same in the two groups)

```
. sts test stage34
    failure _d: status
    analysis time _t: time
Log-rank test for equality of survivor functions
\begin{tabular}{|c|c|c|}
\hline stage34 & Events observed & Events expected \\
\hline 0 & 22 & 32.58 \\
\hline 1 & 28 & 17.42 \\
\hline Total & 50 & 50.00 \\
\hline & \[
\begin{aligned}
& \operatorname{chi2}(1)= \\
& \operatorname{Pr}>\operatorname{chi2}=
\end{aligned}
\] & 10.13
0.0015 \\
\hline
\end{tabular}
```

I conclude that the survivor functions are significantly different for states $1 / 2$ vs $3 / 4$. From the observed versus expected numbers we can see that survival is relatively higher in the low stage groups and relatively lower in the high stage groups
g)

h) Again use the log-rank test with null hypothesis

Ho: $\mathrm{S}_{1}(\mathrm{t})=\mathrm{S}_{2}(\mathrm{t})=\mathrm{S}_{3}(\mathrm{t})=\mathrm{S}_{4}(\mathrm{t})$
Ha: at least one \neq

Results are

```
. sts test stage
    analysis time t: time
Log-rank test for equality of survivor functions
\begin{tabular}{|c|c|c|}
\hline stage & Events observed & Events expected \\
\hline 1 & 15 & 22.57 \\
\hline 2 & 7 & 10.01 \\
\hline 3 & 17 & 14.08 \\
\hline 4 & 11 & 3.34 \\
\hline Total & 50 & 50.00 \\
\hline & \[
\begin{aligned}
& \operatorname{chi2(3)}= \\
& \operatorname{Pr}>\operatorname{chi2}=
\end{aligned}
\] & 22.76
0.0000 \\
\hline
\end{tabular}
```

And we conclude that there is a highly significant difference in survival between stages. Note that this chi-square test has 3 df (one less than the number of groups)

