Biostatistics 515, Winter 2004 

Homework 4 solutions/comments
1. Assuming the regression model:
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generate 500 samples of n x observations from a uniform (0,10) distribution. The error terms are from gamma (shape=1, scale=2), t3 and normal (0,2) distribution, respectively. 

The simulation results are the following:

Fig 1. n=100
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(a, c)

--- n=100
All of these histograms appear to be centered around the true values of β0= 2 or β1=3. This is to be expected since all the assumptions for fitting linear model are valid for these three error distributions (normality is not necessary). Histograms of βs for t3 distribution look slightly skewed and for skewed Gamma and normal distribution, the histograms of βs look approximately normal. Hence sample size 100 is large enough for Gamma (1,0.5), but for t3 applying asymptotical normality (large sample theory).
For Gamma errors, we can see few positive outliers in scatter plot (residual vs fitted y) and majority are clustered around zero. The QQ plot indicates the errors are skewed to the right (it curves above the diagonal) which is what we expect.
For t3 errors, we can see few outliers in either direction and majority are clustered around zero. The QQ plot indicates the errors are heavy tailed (S-curve around the diagonal) which is what we expect.

For normal, we can see a random cloud evenly spread around zero. The QQ plot indicates the errors are approximately normal (a straight line along the diagonal with slightly curve at the end). 
--- n=20

With smaller sample size (n=20), we still expect that the estimations of βs are unbiased for all three errors, but with larger variance, since all the assumptions for estimating βs are valid. However with n=20, large sample theory may not apply, so distributions for βs with normality errors might not look normal. So in Figure 2, all of histograms are still centered around the true βs with larger range comparing to n=100. Histograms of βs with Gamma and t3 errors look more skewed comparing to n=100 with Gamma errors relatively closer to normal than t3 errors.  Histograms of βs with normal errors still look roughly normal.  
With such a small sample, the scatter plot and QQ plot are not very informative as they look very similar among three error distributions. 

(b) Coverage probability for 95% joint confidence intervals.

n=100

        beta0 beta1 95%CR num(fraction) 95%CI num(fraction)

gamma(1,0.5) 2.01  3.00    491(0.982)    489(0.978)
t3 

   2.00  3.00    471(0.942)    481(0.962)
normal(0,2)  1.98  3.01    462(0.924)    476(0.952)
n=20

gamma(1,0.5) 1.98  3.00    493(0.986)    490(0.980)
t3

   2.05  2.99    477(0.954)    486(0.972)
normal(0,2)  1.97  3.01    478(0.956)    478(0.956)

Normality or large sample are assumed for building confidence interval (inference), so we would expect normal errors have coverage probability closer to 95% than other two errors and n=100 case have coverage probability closer to 95% than n=20 case. This is indeed the case we see in the above table except confidence region for normal n=100 has smallest coverage probability (92.4%). This might be due to sampling variation. 

Bonferroni intervals are more conservative than confidence region, so we would expect coverage probability using Bonferroni intervals is larger than using confidence region. Indeed we can see this is the case for t3 and normal but not for Gamma which has larger coverage probability using confidence region. This might be due to recentering errors using sample mean instead of true mean 2 for Gamma.  
Fig 2. n=20
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############# R code for Q1 #####################

get.jntci<-function(fit,n.beta,alpha=0.05) {


beta.hat<-summary(fit)$coef


n.par<-dim(beta.hat)[1]


n<-length(n.beta)


ci<-matrix(NA,n.par,3)


ci[,1]<-round(beta.hat[,1],2)


for (i in n.beta) { 


   ci[i,2:3]<-round(fit$coef[i]+c(1,-1)*qt(alpha/(2*n),fit$df)*beta.hat[i,2],2)


}


ci

}

#1.simulation

mysimu<-function(dist, nsub, nsimu=500) {

   beta<-c(2,3)

   beta.h<-NULL

   cov.reg<-0

   cov.bon<-0

   alpha<-0.05

   for (i in 1:nsimu) {


x<-runif(nsub,0,10)


x<-cbind(1,x)


if (dist ==1) {



err<-rgamma(nsub,1,0.5)



err<-err-mean(err)    ## center at 0


} 


if (dist==2) {



err<-rt(nsub,3)


}


if (dist==3) {



err<-rnorm(nsub,0,2)


}


y<-x%*%beta + err


mydata<-data.frame(cbind(y,x[,2]))


colnames(mydata)<-c("y","x")


fit<-lm(y~x, data=mydata)


bb<-fit$coeff


beta.h<-rbind(beta.h,bb)


fo<-t(bb-beta)%*%t(x)%*%x%*%(bb-beta)/(2*summary(fit)$sigma^2)


if(fo<=qf(1-alpha,2,nsub-2)) {cov.reg<-cov.reg+1}


jnci<-get.jntci(fit,1:2)


if ((jnci[1,2]<=beta[1] && jnci[1,3]>=beta[1]) && (jnci[2,2]<=beta[2] && jnci[2,3]>=beta[2])) {



cov.bon<-cov.bon+1


}

   }

   fit.y<-fitted(fit)

   res<-rstudent(fit)

   return(beta.h=beta.h,cov.reg=cov.reg,cov.bon=cov.bon, fit.y=fit.y,res=res)

}

par(mfrow=c(3,4))

nsub<-20

resul<-NULL

nsimu<-500

   mytit<-c(paste("Gamma(1,0.5) n=",nsub,sep=""), "t3", "Norm(0,2)")

   for (j in 1:3) {


gam<-mysimu(j, nsub, nsimu) 


hist(gam$beta.h[,1],xlab="beta0.hat",main=mytit[j])


hist(gam$beta.h[,2],xlab="beta1.hat", main="")


plot(gam$fit.y, gam$res, ylab="jackknife res", xlab="fitted y")


abline(h=0, lty=2)


qqnorm(gam$res)


qqline(gam$res)


resul<-rbind(resul,c(round(apply(gam$beta.h,2,mean),2),gam$cov.reg, 

       
             round(gam$cov.reg/nsimu,3), gam$cov.bon, round(gam$cov.bon/nsimu,3)))

   }

   colnames(resul)<-c("beta0","beta1","CR num","CR %","CI num","CI%")

   print(resul)

}
2. The regression model,
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(a) Jackknife residuals and potential outliers

All 23 Jackknife residuals and their summary statistic:

-0.060 -1.307  0.241  0.168  0.442 -0.773 -1.419 -0.185 -0.913  0.062  1.614 1.231 -1.656 -1.810  1.608
-0.346  1.707  0.749 -1.255  0.804  0.379  0.655 0.222

In general, any points whose Jackknife residuals are beyond 3 or 4 standard deviations from its mean (0) may be considered potential outliers. The range of Jackknife residuals for the patient satisfaction data is from -1.81 to 1.707 which is within 2 standard deviations from 0. Therefore, we may conclude that there is no potential outliers. 
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(b) Leverage points
Leverage values greater than twice of the mean leverage (
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) are considered to be leverage points. There is no leverage value greater than 8/23= 0.3478 in this patient data. The red dotted line in the left panel indicates the twice of the mean leverage (0.3478) and the red dot in the right panel indicates the point with the largest leverage value. The patient with the largest leverage value has age 52, illness severity 62 and anxiety level 2.9. Top three leverage values and their corresponding patients characteristics are the following.
     Y  X1  X2   X3  leverage
9   26  52  62  2.9   0.3387
6   36  49  54  2.9   0.3188
15   57  53  54  2.2   0.3130
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(c)  In general there is no formal test on existing of hidden extrapolation. Scatter plot and leverage values might be two ways to assess hidden extrapolation. The following table shows the summary of the leverage values and the first line is for original 23 patients and second line for original 23 plus the new patient. We can see that the maximum leverage value jump from 0.3387 to 0.5043 which is the leverage value for the new patient and greater than the twice of mean leverage (2*4/24 = 0.3333). This implies that the new patient could be a leverage point. Therefore, estimating the fitted value for this patient will involve hidden extrapolation. The following plot seems confirm our conclusion. The red dot indicates the new patient and it appears outside the cloud of original data points.
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 Min.  1st Qu.  Median    Mean 3rd Qu.    Max. 

Orig. data     0.05728 0.09085 0.17370 0.17390 0.23300 0.33870 

+new point     0.05342 0.07868 0.13400 0.16670 0.23110 0.50430

(d) 
--- The magnitude of Cook’s distance (Di) is usually assessed by comparing it to Fp+1, n-p-1. If Di is greater than 50% percentile of Fp+1, n-p-1, we conclude that the ith observation has significant effect on the fitted values. If Di is less than 10 or 20% percentile of Fp+1, n-p-1, we conclude that the ith observation has little influence on the fitted values. There is only one Di slightly greater than 10% percentile of F4, 19, so I would conclude that there is no influence point in this patient data.
---Any observation with |DFFITSi| greater than 2*sqrt((p+1)/n) might be considered to be influence point. There are four observations meet the criteria but three of them are barely above the threshold (0.834).
    Y X1 X2  X3

11 89 29 48 2.4

13 47 38 55 2.2

15 57 53 54 2.2

17 79 33 56 2.5
---An observation is usually considered influential if the absolute value of DFBETAS exceeds 2/sqrt(n). There are few potential influential points meet the criteria.
    Y X1 X2  X3

11 89 29 48 2.4

15 57 53 54 2.2

17 79 33 56 2.5

    Y X1 X2  X3

2  57 36 46 2.3

11 89 29 48 2.4

13 47 38 55 2.2

15 57 53 54 2.2

17 79 33 56 2.5

    Y X1 X2  X3

2  57 36 46 2.3

6  36 49 54 2.9

11 89 29 48 2.4

13 47 38 55 2.2

15 57 53 54 2.2
(e) I do not see any strong evidence to remove observations from the analysis. First, although DFFITS and DFBETAS measurements pick up some potential influential points, they are not extreme from the cutting lines. Second, most commonly used measurement Cook’s distance did not pick up any influential points. Third, residual plots and leverage plots did not indicate any outlier or leverage points. Forth, just because an observation is an outlier or influential point, does not mean that it should be removed from the analysis. Further investigation might be needed before removing any points. Last there are only 23 patients in the data set, for such a small sample, I am always hesitate to remove any observation. However, it might be interesting to see how it changes the analysis by removing 1 or 2 observations. 
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3. (a)
We  wish to summarize the evidence for the effectiveness of the First Step program, designed to provide “maternity care necessary for to ensure healthy birth outcomes for low-income families”.

The following is a general strategy that one could adopt:

· examine closely the scientific question of interest as this will likely help considerably with some of the decisions you will be faced with below.
· Classify each of the covariates: outcome, predictor of interest, adjustment variables.

· Look at univariate and bivariate summaries (this will help distinguish confounders, precision variables), especially relationship between predictor of interest and other variables.
· Pick up to two models:

(1) no adjustment: bwt ~firststep
(2) adjusting for confounders identified by a prior consideration (not by p-value testing)

      ■    Model diagnostics for the final model that we use to answer the question of interest.
      ■    Interpret the main parameters (eg. First Step in this case) with point estimate and 95% CI 
      ■    Summarize your conclusions based on the model

      ■    State any limitation you might think of for your model.

 It is important to consider the two groups that are being compared when we look at enrollment vs non-enrollment into the First Step program. In particular, the First Step program is aimed at “low-income” mothers. Thus, those not enrolled in the program either (a) do not meet the eligibility criteria and presumiably in a “high” income family or (b) do meet the criteria but were not enrolled for some reason. Ideally, to assess the impact of the First Step program we would perform the assessment among mothers of the same socio-economic status. Thus, in any analysis it will be necessary to include measures of income in the model. However, in the dataset we donot have such information and consequently we have to use two surrogate variables: welfare participation and education. This can be done by either including the variables in any model or restricting the analysis to an appropriate subset. 
The known risk factors for low birth weight include poverty, smoking, medical risks, pregnancy complications, substance abuse, and African American race (see “First Step Database”). So any variables measuring these risk factors should be included in the model. Therefore, the final model will include marital status, smoking status, drinking status, prior weight, weight gain, gestation period, the parity, race, education and welfare as well as the predictor of interest First Step.  
Before fitting the model it is worth to looking at the parity and education variables more closely. There are very few mothers with previous live born babies more than three, so I recode the parity as a 4-level factor variable where the levels correspond to 0, 1, 2 and >=3. Education is recoded as a 3-level factor variable where the levels correspond to an lower than high school education, a high school education and a post-high school (college) education. 
Table 1.  Characteristics of the mothers by participation in the First Step program
	
	Women not in First Step 
	Women in First Step
	Total 

	Race      Asian

              Black 

              Hispanic

              Other

              White
	339 (16.2) *
118 (5.6)

132 (6.3)

20 (0.95)

1488 (70.95)
	53 (13.5)

60 (14.9)

88 (21.8)

11 (2.7)

191 (47.4)
	392 (15.7)

178  (7.1)

220 (8.8)

31 (1.2)

1679 (67.2)

	Parity     0
               1

               2

              >=3 
	974
753

251

119
	192
116

56

39
	1166
869

307

158 

	Smoker  Yes 
	124 (5.9)
	51 (12.7)
	175 (7.0)

	Drinker  Yes
	25 (1.2)
	4 (1.0)
	29 (1.2)

	Gender   Female 
	1018 (48.6)
	191 (47.4)
	1209 (48.4)

	Married 
	1757 (83.8)
	199 (49.4)
	1956 (78.2)

	Welfare  Yes
	21 (1.0)
	21 (5.2)
	42 (1.7)

	BWT (gm)
	3424.7 (548.42)
	3358.5 (610.8)
	3414 .0(559.4)

	Prior weight(lbs)
	146.2 (33.4)
	150.8 (40.0)
	146.9 (34.6)

	Weight gain (lbs)
	32.1 (12.9)
	33.0 (15.6)
	32.3 (13.4)

	Gestation (wks)
	38.9 (2.3)
	38.7 (2.8)
	38.9 (2.4)

	Age (yrs)
	30 (5.7)
	24 (6.0)
	30 (6.0)

	Total 
	2097
	403
	2500


* For factor variables, counts and percentage (within columns) are given. For continuous variables, mean and standard deviation are provided.
Table 2 coefficient of predictor of interest (first step)  
	Models
	BWT~ first step
	BWT~ first step + other covariates 

	Estimates (95%CI)
	-66.18 (-125.79,  -6.57)
	-23.22 (-75.16, 28.72)


Unadjusted model indicates that for women in the first step program the birth weight of infants are 66.18 grams (95% CI: -125.79, -6.57) lower than non-participating women. The 95% CI shows the difference is statistically significant from zero. After adjusting for other covariates, the birth weight of infants for participating women are 23.22 grams (95% CI: -75.16, 28.72) lower than non-participating women while holding all other covariates constant. The 95% CI shows the difference is not statistically significant from zero. 
There are some limitations of this analysis. First, we are interested in assessing the effectiveness of the program to reduce the number of low birth weight infants, so a dichotomized birth weight (at 2500gm) will be a better outcome of interest. This will lead to a logistic regression which we have not learned in class. Second, there are some unmeasured confounders, such as family income, might cause biased estimates. Last, to better assess the effectiveness of the program, we need to sample all eligible low-income women and compare those who participate the program with those who did not. 
4. well done
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