Biostatistics 515, Winter 2004 

Homework 7 solutions/comments

1.

(a) As I said in HW6 solution, in R, fitted(glm.object) will give you Pr(Y=1), which is πi. However, we need to plot fitted logit response, which is logit(πi) or say log odds, so we should use “predict(glm.object)” instead. 
As we are plotting observed πi against fitted logit(πi), we would expect to see a S-shaped curve if the model fit the data well (recall logistic function is S-shaped curve). It appears the plot is approximately consistent with the S-shaped (logistic) curve superimposed with the red dotted line. However, with such few points (four), it is a bit hard to see especially in the upper left corner. If we have more points between third and forth groups, we might see a better match with S-curve. 
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(b)
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There appear to be two potential outliers with deviance close or greater than 2:

Index   
y  age awar

14 

1  39   59

38 

1  46   43
(c) Three types of error rates:
cutoff  overall err. Error|Y=1  Error|Y=0
0.4      
0.10 

0.095 
0.103

0.5    
0.12 

0.143 
0.103

0.6 

0.12 

0.190 
0.069

0.7 

0.10 

0.190 
0.034
(d) The overall error rate is minimized at the cutoffs of 0.4 and 0.7. However only at 0.4 cutoff level the error rate for clients receiving the flu shot (false negative rate = 0.095) and the error rate for clients not receiving the flu shot (false positive rate = 0.103) is fairly balanced. At the 0.7 cutoff level false negative rate (0.190) is much higher than false positive rate (0.034). We can see that false negative rate increases and false positive rate decreases as cutoffs increases, because in general with higher cutoff, the test is better at predicting who will not receive flu shot than who will receive flu shot. At extreme case, cutoff 1.0, the test will predict nobody will get flu shot, in other words, false positive rate is equal to zero.
(e) ROC curve with AUC = 0.961indicates that the model has very good predictive ability. 
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## HW7 code

## 3/2/2004

#1.

flu<-read.table("P:\\Windows Files\\TA\\biostat515_2004\\flu.dat", header=F)

names(flu)<-c("y", "age","awar")

attach(flu)

fit.flu<-glm(y~age*awar, family = binomial, data= flu)

summary(fit.flu)
#a.

logit<-predict(fit.flu)

logit2<-cut(logit, breaks=c(-10, -4, -1.2, 3.3,20), labels=F)

table(logit2)

brk<-c(-10, -4, -1.2, 3.3,20)

mid<-c()

for (b in 1:(length(brk)-1)) {

    mid<-c(mid,brk[b]+(brk[b+1]-brk[b])/2)

}

## find the proportion for each interval

prop<-c()

for (i in 1:4) {

prop<-c(prop,sum(y[logit2==i])/sum(logit2==i))

}

plot(mid,prop, type="b",ylab="observed Pr(Y=1)", xlab="fitted logit")

## superimpose a logistic curve

pi<-seq(0.01,0.99, by=0.01)

logit<-log(pi/(1-pi))

points(logit, pi, col="red", pch = 29)

lines(logit,pi, col="red", lty=3)

legend(-7,1, legend=c("observed", "logistic"), lty=c(1,3),col=c("black", "red"))

#b.

dev<-residuals(fit.flu)

plot(dev, ylab="deviance residuals")

abline(h=2, lty=3)

#c.

cutoff<-seq(0.4,1, by=0.1)

risk<-fitted(fit.flu)

err<-c()

y1<-table(y)[2]

y0<-table(y)[1]

for (c in cutoff) {

   pred.shot<-(risk>c)

   tb<-table(pred.shot,y)

   err<-rbind(err,c((tb[1,2]+tb[2,1])/50,tb[1,2]/y1,tb[2,1]/y0))

}

round(err, 4)

#d.

#e.plot ROC: 1-specificity vs sensitivity

sen<-c()

spe<-c()

for (p in seq(min(risk),0.95, by = 0.05)) {

   pred.shot<-(risk>p)
      

   tb<-table(pred.shot,y)

   spe<-c(spe,tb[1,1]/sum(tb[,1]))

   sen<-c(sen,tb[2,2]/sum(tb[,2]))

}

plot(1-spe, sen, type="b", xlab="1-specificity", ylab="sensitivity")

library(Hmisc, lib.loc="/home/students/xsyu/MyR/Hmisc")

somers2(risk, y)
2. Low Birth Weight data 
All of comments in HW4 solution also apply here. In addition, a few extra comments on this hw.

In all of data analysis, our main focus should be on the question of interest, here we wish to summarize the evidence for the effectiveness of the First Step program. So fitting a model and interpreting your results and making conclusion based on your results should be your main focus, but some students did not present any results for the predictor of interest (First Step) and made no conclusion on whether Fist Step program is beneficial. 

Always remember to give some confidence interval around your point estimates when you interpret the results even if your point estimates are not statistically significant.
Since the main issue is whether or not a baby has low birth weight, I dichotomise the continuous measure of birth weight(BW) at 2500gm, with a binary indicator equal to 1 if BW<2500gm, 0 otherwise. So I will fit a logistic regression model adjusting for the same covariates as in HW4.
Table 1 coefficient of predictor of interest (first step)  

	Models
	BWT~ first step
	BWT~ first step + other covariates 

	ORs (95%CI)
	0.77 (0.41, 1.44)
	0.60 (0.26,1.36)


A crude analysis indicates that for mother who is enrolled in the First Step program, the odds of having a low birth weight baby is estimated to be 23% (OR=0.77 , 95% CI: (0.41,1.44)) lower than the odds for a mother who is not enrolled in the program. Adjusted model indicates that holding all the covariates constant, the odds of having a low birth weight for a mother in the First Step program are estimated to be 40% (OR=0.60 , 95% CI: (0.26,1.36)) lower than for a mother not enrolled. However, the 95%CI are very wide so that it is not clear to what extend we can depend on the point estimates for interpretation. 
Overall, there is some evidence in this data to support a positive impact on birth weight outcomes for the First Step program, but the evidence is not significant. 

