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Modeling binary data

Often in medical studies, we encounter outcomes that are

not continous, but instead fall into 1 of 2 categories. For

example:

• Disease status (disease vs. no disease)

• Alive or dead

• Low birth weight

• Improved health status
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In these cases, we have a binary outcome

yi =
{

0 with probability 1− πi

1 with probability πi
,

where

E[yi] = πi

and

var[yi] = πi(1− πi).

Usually, one f the categories is the outcome of interest, like

death or disease. This category is usually coded as 1.
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We can use linear regression to model this outcome, but this

can present several problems as we will see.

Using the linear model approach, we relate the expected

value of yi to a predictor xi as

E[yi] = β0 + β1xi

Just looking at this relationship, we can see a potential problem.

What is it?
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Over small ranges of the predictor or when the relationship

between the predictor and the outcome is not strong, this may

not be troubling.
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However, if the association is strong, potential problems are

more evident.

●● ● ●●●●● ●● ●● ●●● ●●●●● ●●

●

●

●●

●

●●●●●

●

● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●● ●●●● ● ●●● ●● ● ●● ● ●

−2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y2

We could put constraints on the βs that would prevent this

from happening, but this would be complicated and probably

not the best way to address this problem.
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The next obvious problem comes from the relationship

var[yi] = πi(1− πi)

= E[yi](1− E[yi])

= (β0 + β1xi)(1− β0 − β1xi)

What is this problem?

We may be able to do a transformation to fix this problem,

but it would be better to use the information we have about

the mean-variance relationship to build a more appropriate

regression model.
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Review of 2× 2 tables

Disease

Exposure Yes No

Yes π11 π12

No π21 π22

where πij =Pr (exposure=i & disease = j).

Two of the most commonly used summaries of association

are the relative risk and the odds ratio.
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Relative risk

RR =
Pr(Disease|Exposure)

Pr(Disease|No Exposure)
=

π11/(π11 + π12)
π21/(π21 + π22)

=
π11(π21 + π22)
π21(π11 + π12)
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Odds ratio

Given exposure, the odds of getting the disease are

Pr(Disease|Exposure)

Pr(No Disease|Exposure)
=

π11/(π11 + π12)
π12/(π11 + π12)

=
π11

π12
.

The odds ratio can then be expressed as

OR =
Odds of Disease|Exposure

Odds of Disease|No Exposure
=

π11/π12

π21/π12
=

π11

π21
.
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Regression models for probability of disease

How do we relate the outcome, y, to an exposure, x?

Recall the first lecture, when we discussed relating functions of

the mean to linear functions of predictors (exposures). We will

take that approach to modeling the outcome in this case by

modeling

g(E[yi|xi]) = g(πi) = β0 + β1xi

E[yi|xi] = πi = g−1(β0 + β1xi),

where g() is called a link function. How do we interpret πi?
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Distribution of y

In this case, we know that yi follows a bernoulli distribution

p(yi) = πyi
i (1− πi)1−yi

= [g−1(β0 + β1xi)]yi[1− g−1(β0 + β1xi)]1−yi.
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Relating πi to exposure

We will first look at the case where the exposure is dichoto-

mous (exposed/unexposed =1/0) One way we may relate πi to

the exposures is through the log-link, g = log. This gives the

following relationship

log(πi) = β0 + β1xi.

When a subject is exposed, xi = 1 and πi = πD|E (probability

of disease given exposure). In the 2 × 2 table, this was

π11/(π11 + π12). Therefore,

log(πD|E) = β0 + β1.

When a subject is unexposed, xi = 1 and πi = πD|Ec (prob-
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ability of disease given no exposure). In the 2 × 2 table, this

was π21/(π21 + π22). Therefore,

log(πD|Ec) = β0.

We can then get the relative risk as follows.

log(πD|E)− log(πD|Ec) = β0 + β1 − β0

log
(

πD|E

πD|Ec

)
= β1

RR = exp(β1).

What are some potential drawbacks of this modeling scheme?
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Logistic regression

In logistic regression, we use the logit link, which is defined

as

g(πi) = logit(πi) = log
(

πi

1− πi

)
.

This is equivalent to modeling the log odds. We relate E[yi|xi]
to the exposure using

logit(πi) = β0 + β1xi.

When a subject is exposed, xi = 1 and πi = πD|E (proba-

bility of disease given no exposure). Therefore,

logit(πD|E) = β0 + β1.
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This is equivalent to the log of the odds of disease given

exposure.

When a subject is unexposed, xi = 0 and πi = πD|Ec

(probability of disease given no exposure). Therefore,

logit(πD|Ec) = β0.

This is equivalent to the log of the odds of disease given no

exposure.
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Calculating the odds ratio

We can calculate the odds ratio as follows

logit(πD|E)− logit(πD|Ec) = β0 + β1 − β0

log
(

πD|E

1− πD|E

)
− log

(
πD|Ec

1− πD|Ec

)
= β1(

πD|E

1− πD|E
/

πD|Ec

1− πD|Ec

)
= β1

OR = exp(β1)
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CHS Example

In this example, we will look at coronary heart disease. We

code

yi =
{

1, disease

0, no disease
.

The exposure is male gender. Our observed proportions are
CHD

Exposure Yes No

Male 0.098 0.322

Female 0.102 0.478

Pr(Disease)= 0.098 + 0.102 = 0.2
Pr(Disease|Male)=0.098/(0.098+0.322)=0.233

Pr(Disease|Female)=0.102/(0.102+0.478)=0.176

Pr(Disease|Male)−Pr(Disease|Female)= 0.233−0.176 = 0.057
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RR = 0.098/(0.098 + 0.322)/(0.102/(0.102 + 0.478)) = 1.32
OR = 0.098/0.322/(0.102/0.478) = 1.43

Because this is a simple 2 × 2 table, our estimates from

linear regression and glm with log and logit links should match.

Linear regression

lm1=lm(CHD~GENDER,data=chs)
summary(lm1)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.1759 0.0235 7.49 0.0000

GENDER 0.0575 0.0362 1.59 0.1133

πi = 0.1759 + 0.0575xi
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GLM with log link

glm1=glm(CHD~GENDER,family=binomial(link="log"),data=chs)
summary(glm1)

Estimate Std. Error z value Pr(>|z|)
(Intercept) −1.7381 0.1271 −13.67 0.0000

GENDER 0.2828 0.1783 1.59 0.1128

log(πi) = −1.7381 + 0.2828xi

How do we get the relative risk from this output?
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Logistic regression (GLM with logit link)

glm2=glm(CHD~GENDER,family=binomial(link="logit"),data=chs)
summary(glm2)

Estimate Std. Error z value Pr(>|z|)
(Intercept) −1.5446 0.1542 −10.01 0.0000

GENDER 0.3551 0.2245 1.58 0.1138

logit(πi) = −1.5446 + 0.3551xi

How do we get the odds ratio from this output?
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Exposures measured on a continuous scale

So far, we’ve only replicated the information we could from

a 2 × 2 table. What if, instead, we had an exposure that was

measured on a continuous scale. Examples

• Age

• An enviromental toxin that is hypothesized to be related to

some disease

• Score on an elementary school exam and subsequent enroll-

ment in college
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Relative risk regression with continuous
predictor

log(πi) = β0 + β1xi

x = c log(π(xi = c)) = β0 + β1c

x = c + 1 log(π(xi = c + 1)) = β0 + β1(c + 1)

log(π(xi = c))− log(π(xi = c + 1)) = β0 + β1c− (β0 + β1(c + 1))

log
(

π(xi = c))
π(xi = c + 1)

)
= β1(c− c− 1)

π(xi = c)
π(xi = c + 1)

= exp(−β1)

How do we interpret this?
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Logistic regression with continuous predictor

logit(πi) = β0 + β1xi

x = c logit(π(xi = c)) = β0 + β1c

x = c + 1 logit(π(xi = c + 1)) = β0 + β1(c + 1)

logit(π(xi = c))− logit(π(xi = c + 1)) = β0 + β1c− (β0 + β1(c + 1))
odds(π(xi = c))

odds(π(xi = c + 1))
= exp(−β1)
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Example

In this example, we will look at age as a predictor of CHD.

The regression model is

g(E(CHDi)) = β0 + β1agei.

If we use linear regression (CHDi = β0 + β1agei + εi), the

results are

Estimate Std. Error t value Pr(>|t|)
(Intercept) −0.0127 0.2346 −0.05 0.9569

AGE 0.0029 0.0032 0.91 0.3636
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Example with relative risk regression (GLM
with log link)

glm1.2=glm(CHD~AGE,family=binomial(link="log"),data=chs)
summary(glm1.2)

Estimate Std. Error z value Pr(>|z|)
(Intercept) −2.6598 1.1230 −2.37 0.0179

AGE 0.0143 0.0152 0.94 0.3457
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Example with logistic regression

glm1.2=glm(CHD~AGE,family=binomial(link="log"),data=chs)
summary(glm1.2)

Estimate Std. Error z value Pr(>|z|)
(Intercept) −2.6846 1.4356 −1.87 0.0615

AGE 0.0177 0.0195 0.91 0.3632
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