

Software

st 515, Winter 200

We will make extensive use of statistical computing tools in this course. All examples and answer keys will be given in R. However, you are free to use your favorite statistical computing package to complete your assignments.

Evaluations		
Weekly assignments	30%	
Class discussion	5%	
Midterm	20%	
Project	25%	
Final Exam	20%	
15, Winter 2004		Lecture 1: 4

Regression: Necessary Ingredients		Re
Transformation of parameter to be modeled linearly For statistical stability, we often consider best fitting lines to a transformation of the parameter • Notation: $g(\theta)$		Re
Common transformations: Mean: none Geometric mean: log Median: log Odds: log Rates: log Hazard: log		
Biost 515, Winter 2004 Lecture 1: 19	Biost 515,	Winter 20

Simple Regression

Distribution of response for an individual

By the "distribution of response" for a given individual we mean the distribution of response across individuals who have the same value of the grouping variable as that individual

Thus, when speaking of the mean, median, etc. response for an individual, we usually really mean the mean, median, etc. for a population who has the same value of the predictor of that individual

Simple Regression

General notation for variables and parameter

- Y_i Response measured on the *i*th subject
- X_i Value of the predictor for the *i*th subject
- θ_i Parameter of distribution of Y_i

The parameter might be the mean, geometric mean, odds, rate, instantaneous risk of an event (hazard), etc.

Simple Regression General notation for simple regression model $g(\theta_i) = \beta_0 + \beta_1 \times X_i$ $g(\)$ "link" function used for modeling β_0 "Intercept" β_1 "Slope (for predictor X)" The link function is usually either the identity function (so no link) or log ()

Summary	
So far, we've discussed general linear models and deterministic forms for modeling parameters of interest. Starting in the next lecture, we will discuss •Probabilistic models for the linear models (the	;
random component)	
 ◆Estimation of the coefficients in the linear models ◆Hypothesis testing for the coefficients 	
Biost 515, Winter 2004 1	Lecture 1: 31