# **Simple linear regression**

**BIOST 515** 

January 8, 2004

#### **Simple Linear Regression**

Simple linear regression of response Y on predictor XBegin with sample:  $(X_1, Y_1), \dots, (X_N, Y_N)$ 

 $Y_i = E[Y_i|X_i] + \epsilon_i$ 

where

$$E[Y_i|X_i] = \beta_0 + \beta_1 X_i$$

and

 $E(\epsilon_i) = 0, \ var(\epsilon_i) = \sigma^2 \text{ and } cov(\epsilon_i, \epsilon_j) = 0.$ 

# Simple linear regression: example

Trends in mortality with education level

Properties of 60 Standard Metropolitan Statistical Areas (a standard Census Bureau designation of the region around a city) in the United States, collected from a variety of sources.

- Outcome variable: Mortality
- Data collected on possible predictors: social and economic conditions, climate and indices of air pollution
- Question: How is mortality in an SMSA related to the median education level of the population in the SMSA?

## **Scatterplot of Mortality versus Education**



Education

# **Descriptives for Mortality in Education Strata**

| Median years | Number    | Mean mortality | Standard deviation |
|--------------|-----------|----------------|--------------------|
| of education | in strata |                |                    |
| 8-10         | 9         | 978.81         | 81.27              |
| 10-11        | 21        | 969.13         | 44.48              |
| 11-12        | 20        | 925.08         | 41.93              |
| 12+          | 10        | 875.83         | 53.31              |

## Plot of Mean mortality versus Yrs. Educ.

smsa <- read.table("smsa.dat",header=T)
plot(smsa\$Education,smsa\$Mortality, xlab="Education", ylab="Mortality")
m1=tapply(smsa\$Mortality,
cut(smsa\$Education,breaks=c(8,seq(10,13,1))),mean)</pre>

points(c(9,10.5,11.5,12.5), m1, pch=2, cex=2, col=2, type="b")



Education

# **Least Squares Estimation**

How do we estimate the parameters in

 $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i?$ 

We want to minimize the distance between the observed  $Y_i$ s and their fitted values,  $\beta_0 + \beta_1 X_i$ .

For the *i*th observation, this distance is expressed as

 $(Y_i - (\beta_0 + \beta_1 X_i))^2.$ 

But we want to determine this over all observations.

## **Obtaining least squares estimates**

Minimize

$$S^{2} = \sum_{i=1}^{N} (Y_{i} - (\beta_{0} + \beta_{1}X_{i}))^{2}$$

Set the first derivatives equal to 0

$$\frac{\partial S^2}{\partial \beta_0} = -2\sum_{i=1}^N (Y_i - \beta_0 - \beta_1 X_i) = 0$$
$$\frac{\partial S^2}{\partial \beta_1} = -2\sum_{i=1}^N X_i (Y_i - \beta_0 - \beta_1 X_i) = 0$$

And solve for  $\beta_0$  and  $\beta_1$ .

#### Least squares estimates

$$\hat{\beta}_1 = \frac{\sum_{i=1}^N (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^N (X_i - \bar{X})^2}$$

 $\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}.$ 

and

Using these results, we get estimates of the fitted value of the 
$$i$$
th observation

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

and the *i*th residual

$$e_i = Y_i - \hat{Y}_i.$$

Using these results, we can make statements about the relationship of the predictor and the outcome (the mean), but we cannot say much else without more assumptions.

# **Estimation of Least Squares Line**

lm1 <- lm(Mortality~Education, data=smsa)
summary(lm1)</pre>

Call: lm(formula = Mortality ~ Education, data = smsa) Residuals:

Min1QMedian3QMax-151.724-37.0992.41943.813124.909

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 1353.158 91.423 14.801 < 2e-16 \*\*\* Education -37.619 8.307 -4.529 3.01e-05 \*\*\*

# **Interpretation of Output**

Estimates of regression parameters

- Intercept is labeled "(Intercept)" Estimated intercept: 1353.158
- The slope is labeled by its variable name: "Education" Estimated slope: -37.62

# **Superimposed Plot of Least Squares Line**

plot(smsa\$Education,smsa\$Mortality, xlab="Education", ylab="Mortality")
points(c(9.5,10.5,11.5,12.15),m1,pch=2,cex=2,col=2,type="b")
abline(coef(lm1))



# Graphical examination of the model

#### Plotting residuals against the predictor

```
resids=smsa$Mortality-fitted(lm1)
plot(smsa$Education,resids,xlab="Education", ylab="Residuals")
```



#### Plotting the fitted outcome against the observed outcome

plot(smsa\$Mortality,fitted(lm1),xlab="Observed Mortality", ylab="Fitted Mortality")



**Observed Mortality** 

## Inference

In general, a point estimate is not very useful. We require a measure of the precision of the estimate.

The least squares estimators,  $\hat{eta_0}$  and  $\hat{eta_1}$  may be expressed as

$$\hat{\beta}_0 = \sum_{i=1}^N l_i Y_i$$

 $\mathsf{and}$ 

$$\hat{\beta}_1 = \sum_{i=1}^N k_i Y_i,$$

where

$$l_i = \frac{1}{N} - \frac{\bar{x}(x_i - \bar{x})}{\sum_{i=1}^{N} (x_i - \bar{x})^2}$$

and

$$k_i = \frac{(x_i - \bar{x})}{\sum_{i=1}^{N} (x_i - \bar{x})^2}.$$

It is easily show that the least squares estimators are *unbiased* since

$$E[\hat{\beta}_0] = \sum_{i=1}^N l_i E[Y_i] = \beta_0$$

and

$$E[\hat{\beta}_1] = \sum_{i=1}^N k_i E[Y_i] = \beta_1$$

where  $\sum_{i} l_i = 1$ ,  $\sum_{i} l_i x_i = 0$ ,  $\sum_{i} k_i = 0$  and  $\sum_{i} k_i x_i = 1$ . Note that this dervation required no assumptions about the second moments of  $Y_i$ .

#### Variance of least squares estimators

Following the previous derivations we have

$$\begin{aligned} \operatorname{var}(\hat{\beta}_{0}) &= \sigma^{2} \left\{ \frac{1}{N} + \frac{\bar{x}^{2}}{\sum_{i=1}^{N} (x_{i} - \bar{x})^{2}} \right\} &= \sigma^{2} c_{0}^{2} \\ \operatorname{var}(\hat{\beta}_{1}) &= \sigma^{2} \left\{ \frac{1}{\sum_{i=1}^{N} (x_{i} - \bar{x})^{2}} \right\} &= \sigma^{2} c_{1}^{2}, \end{aligned}$$

where  $c_0^2 = \sum_i l_i^2$  and  $c_1^2 = \sum_i k_i^2$ .

$$\operatorname{cov}(\hat{\beta}_0, \hat{\beta}_1) = \sigma^2 \left\{ -\frac{\bar{x}}{\sum_{i=1}^N (x_i - \bar{x})^2} \right\}$$

So far, we haven't made any distributional assumptions about  $\epsilon_i$ . If we assume normality ( $\epsilon_i \sim N(0, \sigma^2)$ ), then the least squares estimators are normally distributed. Alternatively,

- If we have a large sample size, asymptotic normality may be assumed for the estimators.
- If asymptotic normality does not hold, bootstrap or Monte Carlo methods may be appropriate.

## **Confidence intervals**

If  $\beta_0$  and  $\beta_1$  are normally distributed and  $\sigma^2$  is known, we can construct the following  $100(1-\alpha)\%$  confidence intervals

$$\hat{\beta}_j \pm Z_{1-\alpha/2} \times \sqrt{\operatorname{var}(\hat{\beta}_j)}, \ j = 0, 1$$

In general,  $\sigma^2$  is unknown. An unbiased estimate is given by

$$\hat{\sigma}^2 = \frac{1}{N-2} \sum_{i=1}^{N} e_i^2 = \frac{1}{N-2} \sum_{i=1}^{N} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2 = \frac{\mathsf{RSS}}{N-2},$$

where RSS is the residual sums of squares.  $\hat{\sigma}^2$  is also known as MSE (mean sqare error).

It can be shown that

$$\frac{RSS}{\sigma^2} = \frac{(N-2)\hat{\sigma}^2}{\sigma^2} \sim \chi^2_{N-2}.$$

# Confidence intervals for least squares estimates with unknown $\sigma^2$

The relevant  $100(1-\alpha)\%$  confidence intervals are given by

$$\hat{\beta}_j \pm t_{N-2,1-\alpha/2} \times \hat{\text{s.e.}}(\hat{\beta}_j), \ j = 0, 1,$$
 (1)

where  $t^{N-2}(1 - \alpha/2)$  denotes the  $1 - \alpha/2$  point of the standard t-distribution with N-2 degrees of freedom and s.e. $(\hat{\beta}_j) = \hat{\sigma} \times c_j$ .

From the SMSA example, we can now calculate a confidence interval for the estimates of the slope and intercept.

| Parameter | Formula                           | 95% CI           |
|-----------|-----------------------------------|------------------|
| $eta_0$   | $1353.158 \pm 2.00 \times 91.423$ | (1334.3, 1372.0) |
| $eta_1$   | $-37.619 \pm 2.00 \times 8.307$   | (-54.2, -21.0)   |

## **Confidence interval for a point on the regression line**

$$\begin{split} \hat{Y}_{i} &= \hat{\beta}_{0} + \hat{\beta}_{1} x_{i} = \bar{Y} - \hat{\beta}_{1} \bar{x} + \hat{\beta}_{1} x_{i} \\ &= \bar{Y} + \hat{\beta}_{1} (x_{i} - \bar{x}) \\ \text{var}(\hat{Y}_{i}) &= \text{var}(\bar{Y}) + (x_{i} - \bar{x})^{2} \frac{\sigma^{2}}{\sum_{i} (x_{i} - \bar{x})^{2}} \\ &= \sigma^{2} \left[ \frac{1}{N} + \frac{(x_{i} - \bar{x})^{2}}{\sum_{i} (x_{i} - \bar{x})^{2}} \right] \end{split}$$

The  $100(1-\alpha)\%$  confidence interval for  $\hat{Y}_i$  is

$$\hat{Y}_i \pm t_{N-2,1-\alpha/2} \hat{\sigma}_{\sqrt{\frac{1}{N} + \frac{(x_i - \bar{x})^2}{\sum_i (x_i - \bar{x})^2}}}$$

#### For the SMSA example:



Education

## Hypothesis Testing for least squares estimates

Similar to the approach for obtaining confidence intervals for  $\beta_j$ , we find that

$$T = \frac{\hat{\beta}_1 - \beta_1}{\hat{\mathsf{s.e.}}(\hat{\beta}_1)} \sim t^{N-2}.$$
 (2)

Now we can construct hypothesis tests for the regression parameters. From the SMSA example:

Test: 
$$H_0: \beta_1 = 0$$
 vs.  $H_A: \beta_1 \neq 0$ 

Under the null hypothesis,

 $t_{obs} = \frac{\hat{\beta}_1 - \beta_1}{s.\hat{e}.(\hat{\beta}_1)} \sim t^{N-2} = -37.619/8.307 = -4.529$ . To perform an  $\alpha = .05$  level test we compare  $t_{obs}$  (our observed value of (2)) to  $t^{N-2}(\alpha/2) = -2.00$  which is not as extreme as  $t_{obs}$ ; therefore, we reject the null hypothesis.