Simple linear regression

BIOST 515

January 8, 2004

Simple Linear Regression

Simple linear regression of response Y on predictor X
Begin with sample: $\left(X_{1}, Y_{1}\right), \ldots\left(X_{N}, Y_{N}\right)$

$$
Y_{i}=E\left[Y_{i} \mid X_{i}\right]+\epsilon_{i}
$$

where

$$
E\left[Y_{i} \mid X_{i}\right]=\beta_{0}+\beta_{1} X_{i}
$$

and

$$
E\left(\epsilon_{i}\right)=0, \operatorname{var}\left(\epsilon_{i}\right)=\sigma^{2} \text { and } \operatorname{cov}\left(\epsilon_{i}, \epsilon_{j}\right)=0
$$

Simple linear regression: example

Trends in mortality with education level
Properties of 60 Standard Metropolitan Statistical Areas (a standard Census Bureau designation of the region around a city) in the United States, collected from a variety of sources.

- Outcome variable: Mortality
- Data collected on possible predictors: social and economic conditions, climate and indices of air pollution
- Question: How is mortality in an SMSA related to the median education level of the population in the SMSA?

Scatterplot of Mortality versus Education

Descriptives for Mortality in Education Strata

Median years Number Mean mortality Standard deviation of education in strata

$8-10$	9	978.81	81.27
$10-11$	21	969.13	44.48
$11-12$	20	925.08	41.93
$12+$	10	875.83	53.31

Plot of Mean mortality versus Yrs. Educ.

```
smsa <- read.table("smsa.dat",header=T)
plot(smsa$Education,smsa$Mortality, xlab="Education", ylab="Mortality")
m1=tapply(smsa$Mortality,
cut(smsa$Education,breaks=c(8,seq(10,13,1))),mean)
points(c(9,10.5,11.5,12.5), m1, pch=2, cex=2, col=2, type="b")
```


Least Squares Estimation

How do we estimate the parameters in

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i} ?
$$

We want to minimize the distance between the observed $Y_{i} \mathrm{~s}$ and their fitted values, $\beta_{0}+\beta_{1} X_{i}$.

For the i th observation, this distance is expressed as

$$
\left(Y_{i}-\left(\beta_{0}+\beta_{1} X_{i}\right)\right)^{2}
$$

But we want to determine this over all observations.

Obtaining least squares estimates

Minimize

$$
S^{2}=\sum_{i=1}^{N}\left(Y_{i}-\left(\beta_{0}+\beta_{1} X_{i}\right)\right)^{2}
$$

Set the first derivatives equal to 0

$$
\begin{aligned}
& \frac{\partial S^{2}}{\partial \beta_{0}}=-2 \sum_{i=1}^{N}\left(Y_{i}-\beta_{0}-\beta_{1} X_{i}\right)=0 \\
& \frac{\partial S^{2}}{\partial \beta_{1}}=-2 \sum_{i=1}^{N} X_{i}\left(Y_{i}-\beta_{0}-\beta_{1} X_{i}\right)=0
\end{aligned}
$$

And solve for β_{0} and β_{1}.

Least squares estimates

$$
\hat{\beta}_{1}=\frac{\sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)^{2}}
$$

and

$$
\hat{\beta_{0}}=\bar{Y}-\hat{\beta_{1}} \bar{X}
$$

Using these results, we get estimates of the fitted value of the i th observation

$$
\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}
$$

and the i th residual

$$
e_{i}=Y_{i}-\hat{Y}_{i} .
$$

Using these results, we can make statements about the relationship of the predictor and the outcome (the mean), but we cannot say much else without more assumptions.

Estimation of Least Squares Line

```
lm1 <- lm(Mortality^Education, data=smsa)
summary(lm1)
Call:
lm(formula \(=\) Mortality \(\sim\) Education, data \(=\) smsa)
```

Residuals:

Min	1Q	Median	3Q	Max
-151.724	-37.099	2.419	43.813	124.909

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	1353.158	91.423	14.801	$<2 e-16$	***
Education	-37.619	8.307	-4.529	$3.01 \mathrm{e}-05$	***

Interpretation of Output

Estimates of regression parameters

- Intercept is labeled "(Intercept)"

Estimated intercept: 1353.158

- The slope is labeled by its variable name: "Education" Estimated slope: -37.62

Superimposed Plot of Least Squares Line

plot(smsa\$Education,smsa\$Mortality, xlab="Education", ylab="Mortality") points (c (9.5, 10.5, 11.5, 12.15) , m1, pch=2, cex=2, col=2, type="b") abline (coef(lm1))

Graphical examination of the model

Plotting residuals against the predictor

```
resids=smsa$Mortality-fitted(lm1)
plot(smsa$Education,resids,xlab="Education", ylab="Residuals")
```


Plotting the fitted outcome against the observed outcome

```
plot(smsa$Mortality,fitted(lm1),xlab="Observed Mortality", ylab="Fitted Mortality")
```


Inference

In general, a point estimate is not very useful. We require a measure of the precision of the estimate.

The least squares estimators, $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ may be expressed as

$$
\hat{\beta_{0}}=\sum_{i=1}^{N} l_{i} Y_{i}
$$

and

$$
\hat{\beta}_{1}=\sum_{i=1}^{N} k_{i} Y_{i}
$$

where

$$
l_{i}=\frac{1}{N}-\frac{\bar{x}\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}
$$

and

$$
k_{i}=\frac{\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}
$$

It is easily show that the least squares estimators are unbiased since

$$
E\left[\hat{\beta}_{0}\right]=\sum_{i=1}^{N} l_{i} E\left[Y_{i}\right]=\beta_{0}
$$

and

$$
E\left[\hat{\beta}_{1}\right]=\sum_{i=1}^{N} k_{i} E\left[Y_{i}\right]=\beta_{1}
$$

where $\sum_{i} l_{i}=1, \sum_{i} l_{i} x_{i}=0, \sum_{i} k_{i}=0$ and $\sum_{i} k_{i} x_{i}=1$. Note that this dervation required no assumptions about the second moments of Y_{i}.

Variance of least squares estimators

Following the previous derivations we have

$$
\begin{aligned}
& \operatorname{var}\left(\hat{\beta}_{0}\right)=\sigma^{2}\left\{\frac{1}{N}+\frac{\bar{x}^{2}}{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}\right\}=\sigma^{2} c_{0}^{2} \\
& \operatorname{var}\left(\hat{\beta}_{1}\right)=\sigma^{2}\left\{\frac{1}{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}\right\}=\sigma^{2} c_{1}^{2}
\end{aligned}
$$

where $c_{0}^{2}=\sum_{i} l_{i}^{2}$ and $c_{1}^{2}=\sum_{i} k_{i}^{2}$.

$$
\operatorname{cov}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)=\sigma^{2}\left\{-\frac{\bar{x}}{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}\right\}
$$

So far, we haven't made any distributional assumptions about ϵ_{i}. If we assume normality $\left(\epsilon_{i} \sim N\left(0, \sigma^{2}\right)\right.$), then the least squares estimators are normally distributed.
Alternatively,

- If we have a large sample size, asymptotic normality may be assumed for the estimators.
- If asymptotic normality does not hold, bootstrap or Monte Carlo methods may be appropriate.

Confidence intervals

If β_{0} and β_{1} are normally distributed and σ^{2} is known, we can construct the following $100(1-\alpha) \%$ confidence intervals

$$
\hat{\beta}_{j} \pm Z_{1-\alpha / 2} \times \sqrt{\operatorname{var}\left(\hat{\beta}_{j}\right)}, j=0,1
$$

In general, σ^{2} is unknown. An unbiased estimate is given by

$$
\hat{\sigma}^{2}=\frac{1}{N-2} \sum_{i=1}^{N} e_{i}^{2}=\frac{1}{N-2} \sum_{i=1}^{N}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)^{2}=\frac{\mathrm{RSS}}{N-2}
$$

where RSS is the residual sums of squares. $\hat{\sigma}^{2}$ is also known as MSE (mean sqare error).

It can be shown that

$$
\frac{R S S}{\sigma^{2}}=\frac{(N-2) \hat{\sigma}^{2}}{\sigma^{2}} \sim \chi_{N-2}^{2}
$$

Confidence intervals for least squares estimates with unknown σ^{2}

The relevant $100(1-\alpha) \%$ confidence intervals are given by

$$
\begin{equation*}
\hat{\beta}_{j} \pm t_{N-2,1-\alpha / 2} \times \text { s.ê. }\left(\hat{\beta}_{j}\right), j=0,1 \tag{1}
\end{equation*}
$$

where $t^{N-2}(1-\alpha / 2)$ denotes the $1-\alpha / 2$ point of the standard t-distribution with $N-2$ degrees of freedom and s.e. $\left(\hat{\beta}_{j}\right)=\hat{\sigma} \times c_{j}$.

From the SMSA example, we can now calculate a confidence interval for the estimates of the slope and intercept.

Parameter	Formula	$95 \% \mathrm{Cl}$
β_{0}	$1353.158 \pm 2.00 \times 91.423$	$(1334.3,1372.0)$
β_{1}	$-37.619 \pm 2.00 \times 8.307$	$(-54.2,-21.0)$

Confidence interval for a point on the regression line

$$
\begin{aligned}
\hat{Y}_{i} & =\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}=\bar{Y}-\hat{\beta}_{1} \bar{x}+\hat{\beta}_{1} x_{i} \\
& =\bar{Y}+\hat{\beta}_{1}\left(x_{i}-\bar{x}\right) \\
\operatorname{var}\left(\hat{Y}_{i}\right) & =\operatorname{var}(\bar{Y})+\left(x_{i}-\bar{x}\right)^{2} \frac{\sigma^{2}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}} \\
& =\sigma^{2}\left[\frac{1}{N}+\frac{\left(x_{i}-\bar{x}\right)^{2}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}\right]
\end{aligned}
$$

The $100(1-\alpha) \%$ confidence interval for \hat{Y}_{i} is

$$
\hat{Y}_{i} \pm t_{N-2,1-\alpha / 2} \hat{\sigma} \sqrt{\frac{1}{N}+\frac{\left(x_{i}-\bar{x}\right)^{2}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}} .
$$

For the SMSA example:

```
N=dim(smsa) [1]
SSXi=(smsa$Education-mean(smsa$Education))^2
SSX=sum(SSXi)
plot(smsa$Education,smsa$Mortality,xlab="Education", ylab="Mortality")
ord=order(smsa$Education)
lines(smsa$Education[ord],fitted(lm1)[ord])
for(i in c(-1,1))lines(smsa$Education[ord],(fitted(lm1)+i*qt(.025,N-2)*53.94*
sqrt(1/N+SSXi/SSX)) [ord])
```


Hypothesis Testing for least squares estimates

Similar to the approach for obtaining confidence intervals for β_{j}, we find that

$$
\begin{equation*}
T=\frac{\hat{\beta}_{1}-\beta_{1}}{\text { s.e. }\left(\hat{\beta}_{1}\right)} \sim t^{N-2} . \tag{2}
\end{equation*}
$$

Now we can construct hypothesis tests for the regression parameters. From the SMSA example:
Test: $H_{0}: \beta_{1}=0$ vs. $H_{A}: \beta_{1} \neq 0$
Under the null hypothesis,
$t_{o b s}=\frac{\hat{\beta}_{1}-\beta_{1}}{\text { S.e. }\left(\hat{\beta}_{1}\right)} \sim t^{N-2}=-37.619 / 8.307=-4.529$. To perform an
$\alpha=.05$ level test we compare $t_{\text {obs }}$ (our observed value of (2)) to $t^{N-2}(\alpha / 2)=-2.00$ which is not as extreme as $t_{o b s}$; therefore, we reject the null hypothesis.

