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Simple Linear Regression

Simple linear regression of response Y on predictor X

Begin with sample: (X1, Y1), . . . (XN , YN)

Yi = E[Yi|Xi] + εi

where

E[Yi|Xi] = β0 + β1Xi

and

E(εi) = 0, var(εi) = σ2 and cov(εi, εj) = 0.
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Simple linear regression: example

Trends in mortality with education level

Properties of 60 Standard Metropolitan Statistical Areas (a standard

Census Bureau designation of the region around a city) in the United

States, collected from a variety of sources.

• Outcome variable: Mortality

• Data collected on possible predictors: social and economic condi-

tions, climate and indices of air pollution

• Question: How is mortality in an SMSA related to the median

education level of the population in the SMSA?
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Scatterplot of Mortality versus Education
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Descriptives for Mortality in Education Strata

Median years Number Mean mortality Standard deviation

of education in strata

8-10 9 978.81 81.27

10-11 21 969.13 44.48

11-12 20 925.08 41.93

12+ 10 875.83 53.31
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Plot of Mean mortality versus Yrs. Educ.

smsa <- read.table("smsa.dat",header=T)
plot(smsa$Education,smsa$Mortality, xlab="Education", ylab="Mortality")
m1=tapply(smsa$Mortality,
cut(smsa$Education,breaks=c(8,seq(10,13,1))),mean)
points(c(9,10.5,11.5,12.5), m1, pch=2, cex=2, col=2, type="b")
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Least Squares Estimation

How do we estimate the parameters in

Yi = β0 + β1Xi + εi?

We want to minimize the distance between the observed Yis and

their fitted values, β0 + β1Xi.

For the ith observation, this distance is expressed as

(Yi − (β0 + β1Xi))2.

But we want to determine this over all observations.
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Obtaining least squares estimates

Minimize

S2 =
N∑

i=1

(Yi − (β0 + β1Xi))2

Set the first derivatives equal to 0

∂S2

∂β0
= −2

N∑
i=1

(Yi − β0 − β1Xi) = 0

∂S2

∂β1
= −2

N∑
i=1

Xi(Yi − β0 − β1Xi) = 0

And solve for β0 and β1.
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Least squares estimates

β̂1 =
∑N

i=1(Xi − X̄)(Yi − Ȳ )∑N
i=1(Xi − X̄)2

and

β̂0 = Ȳ − β̂1X̄.

Using these results, we get estimates of the fitted value of the ith

observation

Ŷi = β̂0 + β̂1Xi

and the ith residual

ei = Yi − Ŷi.

Using these results, we can make statements about the relationship

of the predictor and the outcome (the mean), but we cannot say

much else without more assumptions.
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Estimation of Least Squares Line

lm1 <- lm(Mortality~Education, data=smsa)
summary(lm1)

Call:
lm(formula = Mortality ~ Education, data = smsa)

Residuals:
Min 1Q Median 3Q Max

-151.724 -37.099 2.419 43.813 124.909

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1353.158 91.423 14.801 < 2e-16 ***
Education -37.619 8.307 -4.529 3.01e-05 ***
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Interpretation of Output

Estimates of regression parameters

• Intercept is labeled ”(Intercept)”

Estimated intercept: 1353.158

• The slope is labeled by its variable name: ”Education”

Estimated slope: -37.62
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Superimposed Plot of Least Squares Line

plot(smsa$Education,smsa$Mortality, xlab="Education", ylab="Mortality")
points(c(9.5,10.5,11.5,12.15),m1,pch=2,cex=2,col=2,type="b")
abline(coef(lm1))
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Graphical examination of the model

Plotting residuals against the predictor

resids=smsa$Mortality-fitted(lm1)
plot(smsa$Education,resids,xlab="Education", ylab="Residuals")
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Plotting the fitted outcome against the observed outcome

plot(smsa$Mortality,fitted(lm1),xlab="Observed Mortality", ylab="Fitted Mortality")
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Inference

In general, a point estimate is not very useful. We require a measure

of the precision of the estimate.

The least squares estimators, β̂0 and β̂1 may be expressed as

β̂0 =
N∑

i=1

liYi

and

β̂1 =
N∑

i=1

kiYi,

where

li =
1
N
− x̄(xi − x̄)∑N

i=1(xi − x̄)2

BIOST 515 14



and

ki =
(xi − x̄)∑N

i=1(xi − x̄)2
.

It is easily show that the least squares estimators are unbiased since

E[β̂0] =
N∑

i=1

liE[Yi] = β0

and

E[β̂1] =
N∑

i=1

kiE[Yi] = β1

where
∑

i li = 1,
∑

i lixi = 0,
∑

i ki = 0 and
∑

i kixi = 1. Note that

this dervation required no assumptions about the second moments

of Yi.
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Variance of least squares estimators

Following the previous derivations we have

var(β̂0) = σ2

{
1
N

+
x̄2∑N

i=1(xi − x̄)2

}
= σ2c2

0

var(β̂1) = σ2

{
1∑N

i=1(xi − x̄)2

}
= σ2c2

1,

where c2
0 =

∑
i l

2
i and c2

1 =
∑

i k
2
i .

cov(β̂0, β̂1) = σ2

{
− x̄∑N

i=1(xi − x̄)2

}
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So far, we haven’t made any distributional assumptions about εi. If

we assume normality (εi ∼ N(0, σ2)), then the least squares

estimators are normally distributed.

Alternatively,

• If we have a large sample size, asymptotic normality may be

assumed for the estimators.

• If asymptotic normality does not hold, bootstrap or Monte Carlo

methods may be appropriate.
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Confidence intervals

If β0 and β1 are normally distributed and σ2 is known, we can

construct the following 100(1− α)% confidence intervals

β̂j ± Z1−α/2 ×
√

var(β̂j), j = 0, 1

In general, σ2 is unknown. An unbiased estimate is given by

σ̂2 =
1

N − 2

N∑
i=1

e2
i =

1
N − 2

N∑
i=1

(yi − β̂0 − β̂1xi)2 =
RSS

N − 2
,

where RSS is the residual sums of squares. σ̂2 is also known as MSE

(mean sqare error).
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It can be shown that

RSS

σ2
=

(N − 2)σ̂2

σ2
∼ χ2

N−2.
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Confidence intervals for least squares estimates with
unknown σ2

The relevant 100(1− α)% confidence intervals are given by

β̂j ± tN−2,1−α/2 × ˆs.e.(β̂j), j = 0, 1, (1)

where tN−2(1− α/2) denotes the 1− α/2 point of the standard

t-distribution with N − 2 degrees of freedom and ˆs.e.(β̂j) = σ̂ × cj.

From the SMSA example, we can now calculate a confidence interval

for the estimates of the slope and intercept.

Parameter Formula 95% CI

β0 1353.158± 2.00× 91.423 (1334.3, 1372.0)

β1 −37.619± 2.00× 8.307 (-54.2, -21.0)
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Confidence interval for a point on the regression line

Ŷi = β̂0 + β̂1xi = Ȳ − β̂1x̄ + β̂1xi

= Ȳ + β̂1(xi − x̄)

var(Ŷi) = var(Ȳ ) + (xi − x̄)2
σ2∑

i(xi − x̄)2

= σ2

[
1
N

+
(xi − x̄)2∑
i(xi − x̄)2

]
The 100(1− α)% confidence interval for Ŷi is

Ŷi ± tN−2,1−α/2σ̂

√
1
N

+
(xi − x̄)2∑
i(xi − x̄)2

.
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For the SMSA example:

N=dim(smsa)[1]
SSXi=(smsa$Education-mean(smsa$Education))^2
SSX=sum(SSXi)
plot(smsa$Education,smsa$Mortality,xlab="Education", ylab="Mortality")
ord=order(smsa$Education)
lines(smsa$Education[ord],fitted(lm1)[ord])
for(i in c(-1,1))lines(smsa$Education[ord],(fitted(lm1)+i*qt(.025,N-2)*53.94*

sqrt(1/N+SSXi/SSX))[ord])
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Hypothesis Testing for least squares estimates

Similar to the approach for obtaining confidence intervals for βj, we

find that

T =
β̂1 − β1

ˆs.e.(β̂1)
∼ tN−2. (2)

Now we can construct hypothesis tests for the regression

parameters. From the SMSA example:

Test: H0 : β1 = 0 vs. HA : β1 6= 0
Under the null hypothesis,

tobs = β̂1−β1
ˆs.e.(β̂1)

∼ tN−2 = −37.619/8.307 = −4.529. To perform an

α = .05 level test we compare tobs (our observed value of (2)) to

tN−2(α/2) = −2.00 which is not as extreme as tobs; therefore, we

reject the null hypothesis.
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