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Breakdown of sums of squares

The simplest regression estimate for Yi is Ȳ (an intercept-only

model). Yi − Ȳ is the total error and can be broken down

further by

Yi − Ȳ = (Yi − Ŷi) + (Ŷi − Ȳ )

total error = residual error + error explained by regression
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If we square the previous expression and sum over all

observations, we get

N∑
i=1

(Yi − Ȳ )2 =
N∑

i=1

(Ŷi − Ȳ )2 +
N∑

i=1

(Yi − Ŷi)2

=

SSTO = SSR + SSE,

where SSTO is the corrected sums of squares of the

observations, SSR is the sum of squares regression and SSE

is the sums of squares error.



4

Intuitively, if SSR is ’large’ compared to SSE, then β1 is

significantly different than zero.

Recall that Z2 = SSE
σ2 ∼ χ2

N−2. It can also be shown that,

under H0, Z1 = SSR
σ2 χ2

1 and Z1 and Z2 are independent.

Under H0,

F =
Z1/1

Z2/(N − 2)
=

SSR

SSE/(N − 2)
∼ F1,N−2.

If the observed statistic

Fobs > F1,N−2,1−α,

then we reject H0 : β1 = 0.
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The calculations for the F-test are usually presented in an

analysis of variance (ANOVA) table.

Source of Sums of squares Degrees of Mean E[Mean square]

variation freedom square

Regression SSR =
PN

i=1(Ŷi − Ȳ )2 1 SSR σ2 + β2
1

PN
i=1(Xi − X̄)2

Error SSE =
PN

i=1(Ŷi − Yi)
2 N-2 SSE

N−2 σ2

Total SSTO =
PN

i=1(Yi − Ȳ )2 N-1

lm1=lm(Mortality~Education,data=smsa)
anova(lm1)

Analysis of Variance Table

Response: Mortality
Df Sum Sq Mean Sq F value Pr(>F)

Education 1 59662 59662 20.508 3.008e-05 ***
Residuals 58 168737 2909
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Fobs = 59662/(168737/58) = 20.51 > F1,58,.95 = 4.01.

Therefore, we reject H0 : β1 = 0.

To get SSTO:

alm1=anova(lm1)
SSTO=sum(alm1$"Sum Sq")
print(SSTO)

[1] 228398.3

Where do the degrees of freedom come from?
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In class, we will show that the t-test and F-test are equivalent

for H0 : β1 = 0. However, the t-test is somewhat more

adaptable as it can be used for one-sided alternatives. We can

also easily calculate it for different hypothesized values in H0.

One-sided t-test for the SMSA example:

H0 : β1 = 0 vs. HA : β1 < 0.

tobs =
β̂1

ŝe(β̂1)
= −4.529

tN−2
α = −1.627 > −4.529 therefore reject H0 in favor of HA.
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Coefficient of Determination

R2 =
SSR

SSTO
= 1− SSE

SSTO

• Often referred to as the proportion of variation explained be

the predictor

• Because 0 ≤ SSE ≤ SSTO, 0 ≤ R2 ≤ 1

• As predictors are added to the model R2 will not decrease

• Large R2 does not necessarily imply a “good” model
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• R2 does not

? measure the magnitude of the slope

? measure the appropriateness of the model

From SMSA example with education as a predictor of

mortality:

R2=alm1$"Sum Sq"[1]/SSTO
print(R2)

0.261217

R2 = 0.26
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Prediction

Sometimes, we would like to be able to predict the outcome

for a new value of the predictor. The new outcome is defined

as

ynew = β0 + β1xnew + ε

with an estimated value of

ŷnew = β̂0 + β̂1xnew + ε̂.

The expected value is

E[ŷnew] = β0 + β1xnew,
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and the variance is

var(ŷnew) = σ2

{
1 +

1
N

+
(xnew − x̄)2∑N
i=1(xi − x̄)2

}
.

The 100(1− α)% confidence interval is given by

β̂0+β̂1xnew±tN−2,1−α/2×σ̂×

{
1 +

1
N

+
(xnew − x̄)2∑N
i=1(xi − x̄)2

}1/2

.

Note: We have assumed ε ∼ N(0, σ2) to construct the

prediction interval. If the error terms are not close to normal,
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then the prediction interval could be misleading. This is not

the case for the interval for the fitted response which only

requires approximate normality for β̂0 and β̂1.
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Maximum Likelihood Estimation

Assumptions about the distribution of εi are not necessary for

least squares estimation. If we assume that εi ∼iid N(0, σ2),
then Yi ∼iid N(β0 + β1xi, σ

2) and

p(Yi|β0, β1, σ
2) =

1√
2πσ2

exp{− 1
2σ2

(Yi − (β0 + β1xi)2}.

The likelihood is then equal to

L(β0, β1, σ
2) =

(
1√

2πσ2

)N

exp{− 1
2σ2

N∑
i=1

(Yi−(β0+β1xi)2}.
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The maximum likelihood estimators (MLEs) are those values

of β0, β1 and σ2 that maximize L or, equivalently, l = log(L).

l ∝ −N/2 log(σ2)− 1
2σ2

N∑
i=1

(Yi − (β0 + β1xi))2.

The MLEs for the simple linear regression model are given by

β̂0 = Ȳ − β̂1(̄x),

β̂1 =
∑N

i=1 Yi(xi − x̄)∑N
i=1(xi − x̄)2
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and

σ̂2 =
1
N

N∑
i=1

(Yi − β̂0 − β̂1xi)2.

The MLEs for β0 and β1 are the same as the least squares

estimators. However the MLE for σ2 is not. Recall that the

least squares estimate of σ2 is unbiased. The MLE of σ2 is

biased (although it is consistent).
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Considerations in the use of regression

1. Regression models are only interpretable over the range of

the observed data.

2. The disposition of x plays an important role in the model fit.

3. Outliers or erroneous data can disturb the model fit.

4. Just because the regression results indicate that two variables

are related, there is no evidence about causality.
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Multiple Linear Regression

Example:

y = β0 + β1x1 + β2x2 + ε,

E(y) = 2 + 8x1 + 10x2

β1 indicates the change in the expected response per unit

change in x1 when x2 is held constant. Likewise, β2 represents

the change in the expected response per unit change in x2

when x1 is held constant.
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We now consider the model

yi = β0 + β1xi1 + · · ·+ βpxip + εi, (1)

i = 1, . . . , n, E[εi] = 0, var(εi) = σ2 and cov(εi, εj) = 0. The

parameter βj, j = 1 . . . , p represents the expected change in yi

per unit of change in xj holding the remaining predictors

xi(i 6= j) constant.
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We can use the model defined in (1) to describe more

complicated models. For example, we might be interested in a

cubic polynomial model,

y = β0 + β1x + β2x
2 + β3x

3 + ε.

If we let x1 = x, x2 = x2 and x3 = x3, then we can rewrite

the regression model as

y = β0 + β1x1 + β2x2 + β3x3 + ε,

which is a multiple linear regression model with 3 predictors.

How do we interpret this model?
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Interactions

We may also want to include interaction effects

y = β0 + β1x1 + β2x2 + β3x1x2.

If we let x3 = x1x2, this model is equivalent to

y = β0 + β1x1 + β2x2 + β3x3.


