Lecture 6 Multiple Linear Regression, cont.

BIOST 515

January 22, 2004

BIOST 515, Lecture 6

Testing general linear hypotheses

Suppose we are interested in testing linear combinations of the regression coefficients. For example, we might be interested in testing whether two regression coefficients are equal

$$H_0: \beta_i = \beta_j.$$

Equivalently,

$$H_0: \beta_i - \beta_j = 0.$$

Such hypotheses can be expressed as $H_0: T\beta = 0$, where T is an $m \times p$ matrix of constants, such that only r of the m equations in $T\beta = 0$ are independent.

For example, consider the model

$$y_i = \beta_0 + x_{i1}\beta_1 + x_{i2}\beta_2 + x_{i3}\beta_3 + \epsilon_i$$

and testing the hypothesis

$$H_0:\beta_1-\beta_2=0.$$

This hypothesis is equivalent to

$$H_0: (0 \ 1 \ -1 \ 0)\beta = 0.$$

We may also consider the hypothesis

$$H_0: \beta_1 - \beta_2 = 0, \beta_3 = 0$$

BIOST 515, Lecture 6

which is equivalent to

$$H_0: T\beta = 0$$

where

$$T = \left(\begin{array}{rrrr} 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right).$$

We can use sums of squares to test general linear hypotheses. The **full model** is

$$y = X\beta + \epsilon$$

with residual sum of squares

$$SSE(FM) = y'y - \hat{\beta}'X'y \ (n-p \text{ degrees of freedom}).$$

Obtain the **reduced model** by solving $T\beta = 0$ for r of the regression coefficients in the full model in terms of the remaining p+1-r regression coefficients. Substitutin these values into the full model will yield the reduced model,

$$y = Z\gamma + \epsilon,$$

where Z is an $n\times(p+1-r)$ matrix and γ is a $(p+1-r)\times 1$ vector of unknown regression coefficients. The residual sum of

squares for the reduced model is

 $SSE(RM) = y'y - \hat{\gamma}Z'y \ (n-p+r \text{ degrees of freedom})$

SSE(RM) - SSE(FM) is called the sum of squares due to the hypothesis $T\beta = 0$. We can test this hypothesis using

$$F_0 = \frac{(SSE(RM) - SSE(FM))/r}{MSE} \sim F_{r,n-p-1}.$$

CHS smoking example

Recall the example where smoking status was recoded to

$$smoke_{1i} = \begin{cases} 1, & never \ smoked \\ 0, & otherwise \end{cases}$$

and

$$smoke_{2i} = \begin{cases} 1, & former \ smoker \\ 0, & otherwise \end{cases}$$
,

and we fit the model

$$BP_i = \beta_0 + \beta_1 smoke_{1i} + \beta_2 smoke_{2i} + \epsilon_i.$$

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	69.2963	1.6176	42.84	0.0000
smoke1	2.9860	1.7629	1.69	0.0909
smoke2	2.6239	1.8162	1.44	0.1492

We may be interested in testing $H_0: \beta_1 = \beta_2$ which is equivalent to testing $H_0: (\begin{array}{ccc} 0 & 1 & -1 \end{array})\beta$ The full model is

$$BP_i = \beta_0 + \beta_1 smoke_{1i} + \beta_2 smoke_{2i} + \epsilon_i,$$

and the reduced model is

$$BP_{i} = \beta_{0} + \beta_{1}smoke_{1i} + \beta_{1}smoke_{2i} + \epsilon_{i}$$
$$= \beta_{0} + \beta_{1}(smoke_{1i} + smoke_{2i}) + \epsilon_{i}$$
$$= \gamma_{0} + \gamma_{1}z_{i} + \epsilon_{i}$$

The reduced model is equivalent to the model we fit with current smokers vs. former and never smokers.

Full model:

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
smoke1	1	101.65	101.65	0.79	0.3737
smoke2	1	267.61	267.61	2.09	0.1492
Residuals	495	63465.82	128.21		

Reduced model:

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
smoker	1	354.93	354.93	2.77	0.0965
Residuals	496	63480.15	127.98		

$$F_0 = \frac{(63480.15 - 63465.82)/1}{128.21} = 0.11 < 3.86.$$

Therefore we fail to reject the null hypothesis.

We could also test this hypothesis using the t statistic

$$t_0 = \frac{\hat{\beta}_1 - \hat{\beta}_2}{\hat{s}e(\hat{\beta}_1 - \hat{\beta}_2)} = \frac{\hat{\beta}_1 - \hat{\beta}_2}{\sqrt{\hat{\sigma}^2(C_{11} + C_{22} - 2C_{12})}}$$

where

$$C = \begin{pmatrix} 0.0204 & -0.0204 & -0.0204 \\ -0.0204 & 0.0242 & 0.0204 \\ -0.0204 & 0.0204 & 0.0257 \end{pmatrix}$$

Therefore

$$t_0 = \frac{(2.986 - 2.624)}{\sqrt{128.21 \times (.0242 + .0257 - 2 \times .0204)}} = .335 < t_{n-p-1,.975}$$

٠

Consider the model

 $BP_i = \beta_0 + \beta_1 smoke_{1i} + \beta_2 smoke_{2i} + \beta_3 age_i + \epsilon_i.$

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
smoke1	1	101.65	101.65	0.83	0.3638
smoke2	1	267.61	267.61	2.18	0.1409
AGE	1	2687.39	2687.39	21.84	0.0000
Residuals	494	60778.42	123.03		

Suppose we want to test

$$H_0: \beta_1 = \beta_2, \beta_3 = 0$$

which is equivalent to

$$H_0: \left(\begin{array}{rrrr} 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right) \beta = 0.$$

The reduced model is

$$BP_i = \beta_0 + \beta_1(smoke_{1i} + smoke_{2i}) + \epsilon_i$$
$$= \gamma_0 + \gamma_1 z_i + \epsilon_i$$

$$F_0 = \frac{(63480.15 - 60778.42)/2}{123.03} = 10.98 > F_{2,494,.95} = 3.01.$$
 We reject the null hypothesis.

Confidence intervals in multiple linear regression

- Confidence interval for a single coefficient
- Confidence interval for a fitted value
- Simultaneous confidence intervals on multiple coefficients

Confidence interval for a single coefficient

We can construct a confidence interval for β_j as follows. Given that

$$\frac{\hat{\beta}_j - \beta_j}{\hat{s}e(\hat{\beta}_j)} = \frac{\hat{\beta}_j - \beta_j}{\sqrt{\hat{\sigma}^2 C_{jj}}} \sim t_{n-p-1},$$

we can define a $100(1-\alpha)$ confidence interval for β_j as

$$\hat{\beta}_j \pm t_{n-p-1,\alpha/2} \sqrt{\hat{\sigma}^2 C_{jj}}.$$

Confidence interval for a fitted value

We can construct a confidence interval for the fitted response for a set of predictor values, $x_{01}, x_{02}, ..., x_{0p}$. Define the vector x_0 as

$$x_0 = \begin{pmatrix} 1 \\ x_{01} \\ x_{02} \\ \vdots \\ x_{0p} \end{pmatrix}.$$

The fitted value at this point is

$$\hat{y_0} = x_0'\hat{\beta}.$$

 $\hat{y_0}$ is an unbiased estimator of $E(y|x_0),$ and the variance of $\hat{y_0}$ is

$$\operatorname{var}(\hat{y_0}) = \sigma^2 x_0' (X'X)^{-1} x_0.$$

Therefore, the $100(1 - \alpha)\%$ confidence interval for the fitted response at $x_{01}, x_{02}, ..., x_{0p}$ is

$$\hat{y_0} \pm t_{n-p-1,\alpha/2} \sqrt{\hat{\sigma^2} x_0' (X'X)^{-1} x_0}.$$

Example from CHS

In the last lecture, we fit the model

 $BP_i = \beta_0 + weight_i\beta_1 + height_i\beta_2 + age_i\beta_3 + gender_i\beta_4 + \epsilon.$

Let's calculate the confidence interval for the fitted value for the 100th subject who has the covariate vector (194.8 159.2 70.0 0.0). The fitted value for BP is 73.67 and $x'_0(X'X)^{-1}x_0 = 0.007972541$ and the 95% confidence interval is

 $73.67 \pm 1.96 \times 11.11 \times \sqrt{0.007972541} = (71.72, 75.62).$

Simultaneous confidence intervals

Sometimes we may be interested in specifying a $(1-\alpha)100\%$ confidence interval (or region) for the entire set or a subset of the coefficients.

$$\frac{(\hat{\beta} - \beta)' X' X(\hat{\beta} - \beta)}{(p+1)MSE} \sim F_{p+1,n-p-1}$$

Therefore, we can define a $(1 - \alpha)100\%$ joint confidence region for all the parameters in β as

$$\frac{(\hat{\beta} - \beta)' X' X(\hat{\beta} - \beta)}{(p+1)MSE} \le F_{p+1,n-p-1}$$

Bonferroni intervals

Another general pproach for obtaining simultaneous confidence intervals is

$$\hat{\beta}_j \pm \Delta \hat{se}(\hat{\beta}_j), \ j = 0, 1, \dots, p.$$
 (1)

Using the Bonferroni method, we set $\Delta = t_{n-p-1,\alpha/(2(p+1))}$ leading to a Bonferroni confidence interval of

$$\hat{\beta}_j \pm t_{n-p-1,\alpha/(2(p+1))} \hat{se}(\hat{\beta}_j).$$

Bonferroni intervals CHS example

 $BP_i = \beta_0 + weight_i\beta_1 + height_i\beta_2 + age_i\beta_3 + gender_i\beta_4 + \epsilon.$

The Bonferroni intervals are

$$\hat{\beta}_j \pm t_{493,.005} \hat{se}(\hat{\beta}_j)$$

	Lower	Upper
(Intercept)	49.25	131.64
WEIGHT	-0.01	0.08
HEIGHT	-0.22	0.22
AGE	-0.57	-0.09
GENDER	-3.11	4.78
WEIGHT HEIGHT AGE	-0.01 -0.22 -0.57	0.08 0.22 —0.09

Hidden extrapolation in multiple regression

R^2 and adjusted R^2

As in simple linear regression

$$R^2 = 1 - \frac{SSE}{SSTO}.$$

In general, R^2 increases whenever new terms are added to the model.

Therefore, for model comparison, we may prefer to use an R^2 that is adjusted for the number of predictors in the model. This is the adjusted R^2 and is equivalent to

$$R_{adj}^2 = 1 - \frac{MSE}{SSTO/(n-1)}$$

Predictors	R^2	R^2_{adj}
weight, height, age, gender	0.0464	0.0386
smoke1, smoke2	0.0058	0.0018
weight, height	0.0221	0.0181
smoke1, smoke2, age	0.048	0.042