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Testing general linear hypotheses

Suppose we are interested in testing linear combinations of

the regression coefficients. For example, we might be interested

in testing whether two regression coefficients are equal

H0 : βi = βj.

Equivalently,

H0 : βi − βj = 0.

Such hypotheses can be expressed as H0 : Tβ = 0, where

T is an m× p matrix of constants, such that only r of the m

equations in Tβ = 0 are independent.
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For example, consider the model

yi = β0 + xi1β1 + xi2β2 + xi3β3 + εi

and testing the hypothesis

H0 : β1 − β2 = 0.

This hypothesis is equivalent to

H0 : ( 0 1 −1 0 )β = 0.

We may also consider the hypothesis

H0 : β1 − β2 = 0, β3 = 0
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which is equivalent to

H0 : Tβ = 0

where

T =
(

0 1 −1 0
0 0 0 1

)
.
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We can use sums of squares to test general linear hypotheses.

The full model is

y = Xβ + ε

with residual sum of squares

SSE(FM) = y′y − β̂′X ′y (n− p degrees of freedom).

Obtain the reduced model by solving Tβ = 0 for r of the

regression coefficients in the full model in terms of the remaining

p + 1− r regression coefficients. Substitutin these values into

the full model will yield the reduced model,

y = Zγ + ε,

where Z is an n× (p + 1− r) matrix and γ is a (p + 1− r)× 1
vector of unknown regression coefficients. The residual sum of
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squares for the reduced model is

SSE(RM) = y′y − γ̂Z ′y (n− p + r degrees of freedom)

SSE(RM)−SSE(FM) is called the sum of squares due to
the hypothesis Tβ = 0. We can test this hypthesis using

F0 =
(SSE(RM)− SSE(FM))/r

MSE
∼ Fr,n−p−1.
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CHS smoking example

Recall the example where smoking status was recoded to

smoke1i =
{

1, never smoked

0, otherwise

and

smoke2i =
{

1, former smoker

0, otherwise
,

and we fit the model

BPi = β0 + β1smoke1i + β2smoke2i + εi.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 69.2963 1.6176 42.84 0.0000

smoke1 2.9860 1.7629 1.69 0.0909

smoke2 2.6239 1.8162 1.44 0.1492
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We may be interested in testing H0 : β1 = β2 which is equiva-

lent to testing H0 : ( 0 1 −1 )β The full model is

BPi = β0 + β1smoke1i + β2smoke2i + εi,

andthe reduced model is

BPi = β0 + β1smoke1i + β1smoke2i + εi

= β0 + β1(smoke1i + smoke2i) + εi

= γ0 + γ1zi + εi

The reduced model is equivalent to the model we fit with

current smokers vs. former and never smokers.
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Full model:

Df Sum Sq Mean Sq F value Pr(>F)

smoke1 1 101.65 101.65 0.79 0.3737

smoke2 1 267.61 267.61 2.09 0.1492

Residuals 495 63465.82 128.21

Reduced model:

Df Sum Sq Mean Sq F value Pr(>F)

smoker 1 354.93 354.93 2.77 0.0965

Residuals 496 63480.15 127.98

F0 =
(63480.15− 63465.82)/1

128.21
= 0.11 < 3.86.

Therefore we fail to reject the null hypothesis.
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We could also test this hypothesis using the t statistic

t0 =
β̂1 − β̂2

ŝe(β̂1 − β̂2)
=

β̂1 − β̂2√
σ̂2(C11 + C22 − 2C12)

where

C =

 0.0204 −0.0204 −0.0204
−0.0204 0.0242 0.0204
−0.0204 0.0204 0.0257

 .

Therefore

t0 =
(2.986− 2.624)√

128.21× (.0242 + .0257− 2× .0204)
= .335 < tn−p−1,.975
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Consider the model

BPi = β0 + β1smoke1i + β2smoke2i + β3agei + εi.

Df Sum Sq Mean Sq F value Pr(>F)

smoke1 1 101.65 101.65 0.83 0.3638

smoke2 1 267.61 267.61 2.18 0.1409

AGE 1 2687.39 2687.39 21.84 0.0000

Residuals 494 60778.42 123.03

Suppose we want to test

H0 : β1 = β2, β3 = 0
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which is equivalent to

H0 :
(

0 1 −1 0
0 0 0 1

)
β = 0.

The reduced model is

BPi = β0 + β1(smoke1i + smoke2i) + εi

= γ0 + γ1zi + εi

F0 =
(63480.15− 60778.42)/2

123.03
= 10.98 > F2,494,.95 = 3.01.

We reject the null hypothesis.
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Confidence intervals in multiple linear
regression

• Confidence interval for a single coefficient

• Confidence interval for a fitted value

• Simultaneous confidence intervals on multiple coefficients
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Confidence interval for a single coefficient

We can construct a confidence interval for βj as follows.

Given that
β̂j − βj

ŝe(β̂j)
=

β̂j − βj√
σ̂2Cjj

∼ tn−p−1,

we can define a 100(1− α) confidence interval for βj as

β̂j ± tn−p−1,α/2

√
σ̂2Cjj.
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Confidence interval for a fitted value

We can construct a confidence interval for the fitted response

for a set of predictor values, x01, x02, ..., x0p. Define the vector

x0 as

x0 =


1

x01

x02
...

x0p

 .

The fitted value at this point is

ŷ0 = x′
0β̂.
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ŷ0 is an unbiased estimator of E(y|x0), and the variance of

ŷ0 is

var(ŷ0) = σ2x′
0(X

′X)−1x0.

Therefore, the 100(1 − α)% confidence interval for the fitted

response at x01, x02, ..., x0p is

ŷ0 ± tn−p−1,α/2

√
σ̂2x′

0(X ′X)−1x0.
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Example from CHS

In the last lecture, we fit the model

BPi = β0 + weightiβ1 + heightiβ2 + ageiβ3 + genderiβ4 + ε.

Let’s calculate the confidence interval for the fitted value

for the 100th subject who has the covariate vector

( 194.8 159.2 70.0 0.0 ). The fitted value for BP is 73.67

and x′
0(X

′X)−1x0 = 0.007972541 and the 95% confidence

interval is

73.67± 1.96× 11.11×
√

0.007972541 = (71.72, 75.62).
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Simultaneous confidence intervals

Sometimes we may be interested in specifying a (1−α)100%
confidence interval (or region) for the entire set or a subset of

the coefficients.

(β̂ − β)′X ′X(β̂ − β)
(p + 1)MSE

∼ Fp+1,n−p−1

Therefore, we can define a (1 − α)100% joint confidence
region for all the parameters in β as

(β̂ − β)′X ′X(β̂ − β)
(p + 1)MSE

≤ Fp+1,n−p−1
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Bonferroni intervals

Another general pproach for obtaining simultaneous confi-

dence intervals is

β̂j ±∆ŝe(β̂j), j = 0, 1, . . . , p. (1)

Using the Bonferroni method, we set ∆ = tn−p−1,α/(2(p+1))

leading to a Bonferroni confidence interval of

β̂j ± tn−p−1,α/(2(p+1))ŝe(β̂j).
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Bonferroni intervals CHS example

BPi = β0 + weightiβ1 + heightiβ2 + ageiβ3 + genderiβ4 + ε.

The Bonferroni intervals are

β̂j ± t493,.005ŝe(β̂j)

Lower Upper

(Intercept) 49.25 131.64

WEIGHT −0.01 0.08

HEIGHT −0.22 0.22

AGE −0.57 −0.09

GENDER −3.11 4.78
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Hidden extrapolation in multiple regression

x1

x 2

Joint region
 of original data

x0 1

x0 2
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R2 and adjusted R2

As in simple linear regression

R2 = 1− SSE

SSTO
.

In general, R2 increases whenever new terms are added to the

model.

Therefore, for model comparison, we may prefer to use an

R2 that is adjusted for the number of predictors in the model.

This is the adjusted R2 and is equivalent to

R2
adj = 1− MSE

SSTO/(n− 1)
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Predictors R2 R2
adj

weight, height, age, gender 0.0464 0.0386

smoke1, smoke2 0.0058 0.0018

weight, height 0.0221 0.0181

smoke1, smoke2, age 0.048 0.042
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