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Education as a predictor for mortality: an
extended example

Previously, we looked at education as a predictor for mortal-

ity,

morti = β0 + β1Educationi + εi.

We want to extend this analysis:

• Include other factors which may cloud the relationship be-

tween education and mortality

• For example, we may expect that poverty may play a role in

access to education and also higher mortality.

• No variable for poverty - will need to use other variables.
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• We have median income. Why might we not want to include

that?

• Instead, use the percentage of the population that is non-

white and the population density

Our new model is

morti = β0+β1Educationi+β2PopDensityi+β3pNonWhitei+εi.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1142.4810 79.5795 14.36 0.0000

Education −25.5200 6.6159 −3.86 0.0003

PopDensity 0.0079 0.0038 2.09 0.0408

pNonWhite 3.9917 0.6080 6.57 0.0000

Residual standard error: 40.67 on 56 degrees of freedom
Multiple R-Squared: 0.5945, Adjusted R-squared: 0.5727
F-statistic: 27.36 on 3 and 56 DF, p-value: 4.997e-11
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Mortality
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Residual Plots
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Partial regression plots
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Identifying outliers and influential observations

An outlier is an extreme observation.

• Depending on their location in the predictor space, outliers

can have severe effects on the regression model.

• We can use jackknife residuals to identify potential outliers.

Any points that are greater than 3 or 4 standard deviations

away from 0 may be considered potential outliers.
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Possible explanations for an outlier

• “Bad” data that results from unusual but explainable events,

eg - malfunction of measuring instrument, incorrect recording

of data. In this case we should try to retrieve the correct

value, but if that’s not possible we may need to discard the

data point.

• Inadequacies in the model. The model may fail to fit the

data well for certain values of the predictor. In this case it

could be disasterous to simply discard outliers.

• Poor sampling of observations in the tail of the distribution.

This may be especially true if the outcome arises from a

heavy-tailed distribution.
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With a sample size of 60, we might expect 2 or 3 residuals

to be further than 2 stand. dev. from 0 and none to be more

than 3 stand. dev.
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Identifying influential observations

If we compute a sample mean, each observation contributes

equally. This is not the case in the regression setting.

• Points that are remote in the predictor space may not in-

fluence the estimate of the regression coefficients but may

influence other summary statistics, such as R2 and the stan-

dard errors of the coefficients. These points are called

leverage points.

• Points that have a noticeable effect on the regression coeffi-

cients are called influence points.

We would like to identify leverage and influence points and

understand their affect on our model fits.
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Leverage

The hat matrix,

H = X(X ′X)−1X ′

plays an important role in identifying influential observations.

The diagonal elements

hi = x′
i(X

′X)−1xi,

where xi is the ith row of the X matrix, play an especially

important role. hi is a standardized measure of the distance of

the X values for ith observation and the means of the X values

for all n observations.
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Also,

0 ≤ hi ≤ 1
n∑

i=1

hi = p + 1.

Thefore the average size of a hat diagonal is h̄ = p+1
n . Leverage

values greater than 2h̄ = 2p+1
n are considered to be outlying

values with regard to their X values and we would consider

them leverage points.
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Leverage for mortality example
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ŷ

R
es

id
ua

ls

Birmingham
Memphis

Washington

York

BIOST 515, Lecture 8 15



Measures of Influence

Regression deletion diagnostics

• Cook’s distance (Cook’s D)

• DFFITS

• DFBETAS
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Cook’s D

Cook’s D measures the influence of the ith observation on

all n fitted values and is given by

Di =
(ŷ − ˆy(i))′(ŷ − ˆy(i))

(p + 1)MSE
,

where ŷ is the vector of fitted values when all n observations

are included and ˆy(i) is the vector of fitted values when the ith

observation is deleted. Cook’s D can also be expressed as

Di =
e2

i

(p + 1)MSE

[
hi

1− hi

]
.

From this expression we see that Di depends on both the size

of the residual, ei, and the leverage, hi.
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The magnitude of Di is usually assessed by comparing it to

Fp+1,n−p−1. If the percentile value is less than 10 or 20 %

than the ith observation has little apparent influence on the

fitted values. If the percentile value is greater than 50%, we

conclude that the ith observation has significant effect on the

fitted values.
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Cook’s D for mortality example
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DFFITS

Cook’s D measures the influence of the ith observation on

all n fitted values of the outcome. In contrast, DFFITSi is

a measure of the influence of the ith observation on the fitted

value ŷi.

DFFITSi =
ŷi − ˆy(i)√
MSE(i)hi

,

where ˆyi(i) is the fitted value of yi from the regression model

fit with the ith observation deleted. The denominator is

the estimated standard deviation of ˆy(i) and is based on the

MSE calculated from the regression model fit when the ith

observation is deleted. The resulting standardization represents

the number of estimated standard deviations of ŷi that the

fitted value increases or decreases with the inclusion of the ith
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observation in the model.

We can show that

(DFFITS)i =
(

hi

1− hi

)1/2

r(−i)

and can therefore be calculated without refitting the model n

times.

Any observation with |DFFITSi| > 2
√

(p + 1)/n warrants

further investigation.
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DFFITS for mortality example
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DFBETAS

Both DFFITS and Cook’s D measure an observation’s influ-

ence on fitted values. Alternatively, we may be interested in

an observation’s influence on the coefficient estimates. We can

get this by measuring the difference between the coefficient

estimated (β̂k) with and without the ith observation ( ˆβk(i))

and divide this distance by an estimate of the standard error.

This measures is DFBETAS

DFBETASk,i =
β̂k − ˆβk(i)√
CkkMSE(i)

.

A large value of DFBETASk,i is indicative of a large

impact of the ith observation on the kth regression coefficient.
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An observation is usually considered influential if the absolute

value of DFBETAS exceeds 2/
√

n. A larger number may be

considered for comparison in smaller data sets.
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DFBETAS for mortality example
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What if we fit the model without York?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1179.6235 74.8399 15.76 0.0000

Education −30.5080 6.3449 −4.81 0.0000

PopDensity 0.0140 0.0040 3.50 0.0009

pNonWhite 3.6778 0.5733 6.41 0.0000
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Variance stabilizing transformations

Non-constant variance can often be remedied using appro-

priate transformations. Ideally, we would choose the transfor-

mation based on some prior scientific knowledge, but this might

not always be available.

Commonly used variance stabilizing techniques
Relationship of σ2 to E[y] Transformation comment

σ2 ∝ constant y′ = y no transformation

σ2 ∝ E[y] y′ =
√

y Poisson data

σ2 ∝ E[y](1− E[y]) y′ = sin−1(
√

y) binomial proportions, 0 ≤ y ≤ 1
σ2 ∝ (E[y])2 y′ = log(y) y > 0
σ2 ∝ (E[y])3 y′ = y−1/2 y > 0
σ2 ∝ (E[y])4 y′ = y−1
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