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Model Building

Previously, we have assumed that the regressors included in

the model are known to be important. We focused on

• Correct functional form

• Verification of underlying assumptions

• Inclusion of known confounders

Sometimes, we will have a database of candidate regressors that

should include all influential variables, but the actual subset to

be included has yet to be determined. Finding the appropriate

subset of regressors is a variable selection problem.
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Variable selection

• In controlled settings (such as clinical trials), variable subset

selection is usually not necessary.

• However, in observational studies, we may collect a large

number of potentially predictive variables without adequate

scientific or historical information to tell us which variables

are important to include in regression.

• In prediction settings, we may also be unsure about which

variables will be predictive of the outcome. In that case, we

may want to determine the “best” set of predictors.
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Possible objectives in model building and
variable selection

• Include as many regressors as possible to have the most

information when predicting values of the outcome.

• We want the model to be as parsimonious as possible because

– Interpretation is difficult with a large number of predictors
– Excess variables may increase the variability of β̂
– Our interest may be in which variables are predictive and not in

prediction itself.
– Variance of the prediction of ŷ increases as the number of regressors

increases
– We may want the smallest subset for prediction for practical reasons -

cost, time, availability, etc.
– Estimation problems may occur with too many variables (multi-

collinearity)
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Selection the “best” regression model

There is no “best” regression model.

• What is “best”?

• There are a number of ways we can choose the “best” - they

will not all yield the same results.

• What about the other potential problems with the model

that might have been ignored while selecting the “best”

model?
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Consequences of model misspecification

Suppose there are K candidate regressors, x1, x2, . . . , xk

and n ≥ K + 1 observations. The full model is

yi = β0 +
K∑

j=1

βjxij + εi, i = 1, . . . , n.

We will assume

• The list of condidate regressors includes all the important

variables (no unmeasured confounders).

• The intercept, β0, will always be in the model.

Suppose we delete r regressors from the model and retain

p = K − r (p + 1 total regressors including the intercept).
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The model may be rewritten as

y = Xp+1βp+1 + Xrβr + ε,

where the X matrix has been partitioned into Xp+1 and Xr

and β has been partitioned into βp+1 and βr.

For the full model, the least squares estimate of β is

β̂∗ = (X ′X)−1X ′y

and an estimate of the variance (σ2) is

σ̂2∗ =
y′(I −X(X ′X)−1X ′)y

n−K − 1
.

The components of β̂∗ are denoted by β̂∗
p+1 and β̂∗

r , and ŷ∗i
denotes the fitted values.
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The subset model is denoted by

y = Xp+1βp+1 + ε,

where the least squares estimate of βp+1 is

β̂p+1 = (X ′
p+1Xp+1)−1X ′

p+1y

and the estimate of the residual variance is

σ̂2 =
y′(I −Xp+1(X ′

p+1Xp+1)−1X ′
p+1)y

n− p− 1

and the fitted values are ŷi.
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Some properties of the estimates β̂p+1 and σ̂2

1. E[β̂p+1] = βp + (X ′
p+1Xp+1)−1X ′

p+1Xrβr

β̂p+1 is biased except . . . ?

2. var(β̂p+1) = σ2(X ′
p+1Xp+1)−1 and

var(β̂∗) = σ2(X ′X)−1. Also, var(β̂p+1) − var(β̂∗
p+1) is

positive semidefinite; therefore, elementwise, var(β̂p+1) ≤
var(β̂∗

p+1). Deleting variables never increases the variances

of the estimates of the remaining parameters.

3. The estimate σ̂2∗ from the full model is an unbiased estimate

of σ2. For the subset model

E[σ̂2] = σ2 +
β′

rX
′
r(I −Xp+1(X ′

p+1Xp+1)−1X ′
p+1)Xrβr

n− p− 1
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Criteria for Evaluation

How can we evaluate and compare different candidate mod-

els?

• Coefficient of multiple determination

• Adjusted R2

• Residual mean square

• AIC

Note: We should always balance these criteria-based model

selection techniques with scientific knowledge.
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Criteria for Evaluation – Coefficient of multiple
determination

Let R2
(subset,p) denote the R2 for the regression model with

p regressors (p + 1 terms inc. the intercept).

R2
(subset,p) =

SSR(subset,p)

SSTO
= 1−

MSE(subset,p)

SSTO
,

where SSR(subset,p) and MSE(subset,p) denote the regression

sum of squares and residual sum of squares for a p + 1 term

subset model. Choose the “best” model by comparing R2 for

different models. Unfortunately, R2
(subset,p) increases with p

with a maximum when p = K.
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Criteria for Evaluation - Adjusted R2

Instead of R2, we may use the adjusted R2 as it may be

more interpretable. The ajusted R2 for a p + 1-term model is

R2
adj(subset,p) = 1− n− 1

n− p− 1
(1−R2

(subset,p).

We can then choose a model based on the largest R2
adj(subset,p).
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Criteria for Evaluation - Residual mean square

The residual mean square for a subset regression model with

p regressors,

MSE(subset,p) =
MSE(subset,p)

n− p− 1
,

may be used to evaluate regression models.

• MSE(subset,p) always decreases as the number of regressors

in the subset increases

• MSE(subset,p) initially decreases, then stabilizes, then may

increase.
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To choose a model based on MSE, choose the model with

• The minimum MSE(subset,p), or

• The subset of regressors where MSE(subset,p) is approxi-

mately equal to MSE from the full model.

The subset regression that minimizes MSE(subset,p) will also

maximize R2
adj,subset.
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Criteria for Evaluation - change in AIC

AIC = −2×maximized log-likelihood+2× no. of parameters

For a regression model with n observations, p + 1 regressors

and normally-distributed errors, the log-likelihood is

l(β, σ2; y) = c +
n

2
log(σ2)− 1

2σ2
‖ y −Xβ ‖2 .

Maximizing over β yields

l(β̂, σ2; y) = c +
n

2
log(σ2)− 1

2σ2
SSE.
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If σ2 is known,

AIC =
SSE

σ2
+ 2p + c.

If σ2 is unknown,

l(β̂, σ̂2; y) = c +
n

2
log(σ̂2)− 1

2

and

AIC = n log(SSE/n) + 2p + c.

We then choose the model that leads to the largest reduction

in AIC.
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Techniques for variable selection

Now that we have some criteria for comparing models, what

are some approaches we can take to compare models? Ideally,

we’d have some scientifically meaningful and specified models

to compare that were determined before seeing the data. This

might not always be the case, though.

• All possible regressions

• Stepwise regression methods

– Forward selection

– Backward elimination

– Stepwise regression
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All possible regressions

• For all candidate regressors, fit all possible models.

• If there are K candidate regressors, fit and examine 2K

models.
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Example

A hospital surgical unit was interested in predicting survival

in patients undergoing a particular type of liver operation. A

random selection of 54 patients was available for analysis. The

potential predictors are

X1 blood clotting score

X2 prognostic index, includes age of patient

X3 enzyme function test score

X4 liver function test score

The number of candidate regressors is small. We can easily

eplore the different models.
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Model AIC mse R2 R2
adj

X1, X2, X3, X4 −324.71 0.00224 0.972∗ 0.970
X1, X2, X3 −326.67∗ 0.00220∗ 0.972 0.971∗

X1, X2, X4 −189.60 0.0278 0.65 0.63
X1, X2 −166.04 0.0438 0.44 0.42
X1, X3, X4 −201.50 0.0223 0.72 0.70
X1, X3 −190.96 0.0276 0.65 0.63
X1, X4 −175.44 0.0368 0.53 0.51
X1 −143.82 0.0672 0.12 0.10
X2, X3, X4 −248.73 0.0093 0.88 0.88
X2, X3 −225.45 0.046 0.81 0.81
X2, X4 −191.54 0.0273 0.65 0.64
X2 −160.30 0.0495 0.35 0.34
X3, X4 −197.56 0.0244 0.69 0.67
X3 −168.45 0.0426 0.44 0.43
X4 −177.38 0.0361 0.53 0.52

Selection using AIC, MSE and adjusted R2 all yield the same
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model,

E(y) = β0 + β1X1 + β2X2 + β3X3.
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Stepwise regression methods

• Evaluating all possible regressions can be burdensome com-

putationally and for the analyst.

• An alternative might be to compare a scientifically meaning-

ful subset of models.

• When that’s not possible or for some reason, not desired,

procedures have been developed to evaluate only a small

subset of regression models by either adding or deleting

regressors one at a time. These fit into 3 categories

– forward selection

– backward elimination

– stepwise regression
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Forward selection

1. Begin with the assumption that there are no regressors in

the model.

2. Check models with all possible regressors added individually.

3. Add the regressor that most changes your criterion in the

correct direction. Go back to 2.

4. If none of the regressors have a positive effect on your

criterion, stop with the regressors you have. This is your

final model.

BIOST 515, Lecture 9 23



Example using add1() in R

Forward selection
Single term additions

Model:
surg$logY ~ -1 + 1

Df Sum of Sq RSS AIC
<none> 3.973 -138.914
surg$X1 1 0.477 3.496 -143.817
surg$X2 1 1.396 2.576 -160.303
surg$X3 1 1.758 2.215 -168.455
surg$X4 1 2.095 1.878 -177.385
Single term additions

Model:
surg$logY ~ surg$X4

Df Sum of Sq RSS AIC
<none> 1.878 -177.385
surg$X1 1 0.002 1.876 -175.437
surg$X2 1 0.485 1.392 -191.539
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surg$X3 1 0.632 1.245 -197.558
Single term additions

Model:
surg$logY ~ surg$X4 + surg$X3

Df Sum of Sq RSS AIC
<none> 1.245 -197.558
surg$X1 1 0.130 1.116 -201.498
surg$X2 1 0.780 0.465 -248.730
Single term additions

Model:
surg$logY ~ surg$X4 + surg$X3 + surg$X2

Df Sum of Sq RSS AIC
<none> 0.47 -248.73
surg$X1 1 0.36 0.11 -324.71

Note: RSS=residual sums of squares (SSE)
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Model selected by forward selection using AIC:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.4888 0.0502 9.73 0.0000

X4 0.0019 0.0097 0.20 0.8436

X3 0.0095 0.0004 23.91 0.0000

X2 0.0093 0.0004 21.19 0.0000

X1 0.0685 0.0054 12.60 0.0000
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Backward elimination

1. Start with all p candidate regressors in the model

2. Drop the predictor that improves your selection criterion the

least

3. Continue until there is no predictor that can be dropped and

result in an improvement of your selection criterion, then all

the remaining predictors define your final model.
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Example using drop1() in R

Backward elimination
Single term deletions

Model:
surg$logY ~ surg$X4 + surg$X3 + surg$X2 + surg$X1

Df Sum of Sq RSS AIC
<none> 0.11 -324.71
surg$X1 1 0.36 0.47 -248.73
surg$X2 1 1.01 1.12 -201.50
surg$X3 1 1.28 1.39 -189.60
surg$X4 1 8.81e-05 0.11 -326.67

Model:
surg$logY ~ surg$X3 + surg$X2 + surg$X1

Df Sum of Sq RSS AIC
<none> 0.11 -326.67
surg$X1 1 0.63 0.74 -225.45
surg$X2 1 1.30 1.41 -190.96
surg$X3 1 2.12 2.23 -166.04
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Model selected by backward elimination

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.4836 0.0426 11.34 0.0000

X3 0.0095 0.0003 31.08 0.0000

X2 0.0093 0.0004 24.30 0.0000

X1 0.0692 0.0041 16.98 0.0000
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Stepwise regression

General stepwise regression techniques are usually a combi-
nation of backward elimination and forward selection, alternat-
ing between the two techniques at different steps.
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Example using stepAIC() in the MASS library
in R

Start with no regressors
Start: AIC= -138.91
surg$logY ~ -1 + 1

Df Sum of Sq RSS AIC
+ surg$X4 1 2.095 1.878 -177.385
+ surg$X3 1 1.758 2.215 -168.455
+ surg$X2 1 1.396 2.576 -160.303
+ surg$X1 1 0.477 3.496 -143.817
<none> 3.973 -138.914

Step: AIC= -177.38
surg$logY ~ surg$X4

Df Sum of Sq RSS AIC
+ surg$X3 1 0.632 1.245 -197.558
+ surg$X2 1 0.485 1.392 -191.539
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<none> 1.878 -177.385
+ surg$X1 1 0.002 1.876 -175.437
- surg$X4 1 2.095 3.973 -138.914

Step: AIC= -197.56
surg$logY ~ surg$X4 + surg$X3

Df Sum of Sq RSS AIC
+ surg$X2 1 0.780 0.465 -248.730
+ surg$X1 1 0.130 1.116 -201.498
<none> 1.245 -197.558
- surg$X3 1 0.632 1.878 -177.385
- surg$X4 1 0.970 2.215 -168.455

Step: AIC= -248.73
surg$logY ~ surg$X4 + surg$X3 + surg$X2

Df Sum of Sq RSS AIC
+ surg$X1 1 0.36 0.11 -324.71
<none> 0.47 -248.73
- surg$X4 1 0.28 0.74 -225.45

BIOST 515, Lecture 9 32



- surg$X2 1 0.78 1.25 -197.56
- surg$X3 1 0.93 1.39 -191.54

Step: AIC= -324.71
surg$logY ~ surg$X4 + surg$X3 + surg$X2 + surg$X1

Df Sum of Sq RSS AIC
- surg$X4 1 8.81e-05 0.11 -326.67
<none> 0.11 -324.71
- surg$X1 1 0.36 0.47 -248.73
- surg$X2 1 1.01 1.12 -201.50
- surg$X3 1 1.28 1.39 -189.60

Step: AIC= -326.67
surg$logY ~ surg$X3 + surg$X2 + surg$X1

Df Sum of Sq RSS AIC
<none> 0.11 -326.67
+ surg$X4 1 8.81e-05 0.11 -324.71
- surg$X1 1 0.63 0.74 -225.45
- surg$X2 1 1.30 1.41 -190.96
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- surg$X3 1 2.12 2.23 -166.04

Call:
lm(formula = surg$logY ~ surg$X3 + surg$X2 + surg$X1)

Coefficients:
(Intercept) surg$X3 surg$X2 surg$X1

0.483621 0.009524 0.009295 0.069225

Start with full model
Start: AIC= -324.71
surg$logY ~ surg$X4 + surg$X3 + surg$X2 + surg$X1

Df Sum of Sq RSS AIC
- surg$X4 1 8.81e-05 0.11 -326.67
<none> 0.11 -324.71
- surg$X1 1 0.36 0.47 -248.73
- surg$X2 1 1.01 1.12 -201.50
- surg$X3 1 1.28 1.39 -189.60

Step: AIC= -326.67
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surg$logY ~ surg$X3 + surg$X2 + surg$X1

Df Sum of Sq RSS AIC
<none> 0.11 -326.67
- surg$X1 1 0.63 0.74 -225.45
- surg$X2 1 1.30 1.41 -190.96
- surg$X3 1 2.12 2.23 -166.04

Call:
lm(formula = surg$logY ~ surg$X3 + surg$X2 + surg$X1)

Coefficients:
(Intercept) surg$X3 surg$X2 surg$X1

0.483621 0.009524 0.009295 0.069225
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Comments on stepwise regression techniques

• The techniques we’ve discussed in this lecture are all quan-

titative/computational and therefore have many scientific

drawbacks.

• They should NEVER replace careful scientific thought and

consideration in model building.

• How do these techniques fit in with our scientific examination

of precision variables and confounders?

• How should we treat influential observations in a stepwise

selection setting?
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Frank Harrell’s summary of problems with
stepwise variable selection

1. It yields R2 values that are biased high.

2. The ordinary F and χ2 statistics do not have the claimed

distribution. Variable selection is based on methods that were

intended to be used to test only prespecified hypotheses.

3. The method yields standard errors of regression coefficient

estimates that are biased low and confidence intervals for

effects and predicted values that are falsely narrow.

4. It yields p-values that are too small (i.e.- there are severe

multiple testing problems) and that do not have the proper
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meaning, and the proper correction for them is a difficult

problem.

5. It provides regression coefficients that are biased high in

absolute value and need shrinkage.

6. Rather than solving problems caused by collinearity, variable

selection is made arbitrary by collinearity.

7. It allows us not to think about the problem.

BIOST 515, Lecture 9 38


