1 Linear Algebra

trace:
$$tr(\mathbf{A}) = \sum_{i} a_{ii}$$

$$tr(\mathbf{A} + \mathbf{B}) = tr(\mathbf{A}) + tr(\mathbf{B})$$

$$\mathrm{tr}(\mathbf{AB}) = \mathrm{tr}(\mathbf{BA})$$

rank=# linearly independent rows = # linearly independent columns

$$rank(\mathbf{AB}) \le rank(\mathbf{A})$$

$$rank(\mathbf{AB}) \le rank(\mathbf{B})$$

$$rank(\mathbf{A}) = rank(\mathbf{A}') = rank(\mathbf{A}'\mathbf{A}) = rank(\mathbf{A}\mathbf{A}')$$

Inverses of square matrices with full rank $\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = I$

Generalized inverses: \mathbf{A}^- is a generalized inverse of \mathbf{A} if $\mathbf{A}\mathbf{A}^-\mathbf{A} = \mathbf{A}$. Generalized inverses are not unique except for square matrices of full rank.

Inner product of vectors **a**, **b**: **a**'**b**

Vector norm:
$$||\mathbf{a}|| = \sqrt{(\mathbf{a}'\mathbf{a})}$$
.

Orthogonal vectors: $\mathbf{a}'\mathbf{b} = 0$

 \mathbf{A} is an orthogonal matrix if $\mathbf{A}^{-1} = \mathbf{A}'$

Eigenvalues and eigenvectors: If $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$ and $\mathbf{x}'\mathbf{x} = 1$ then \mathbf{x} is an eigenvector for \mathbf{A} and its corresponding eigenvalue is λ .

For a symmetric matrix A there exists an orthogonal matrix T such that

- (i) $\mathbf{T}'\mathbf{AT} = \Lambda$
- (ii) $rank(\mathbf{A}) = \#$ non-zero eigenvalues

(iii)
$$\operatorname{tr}(\mathbf{A}) = \Sigma \lambda_i$$
 and $|\mathbf{A}| = \prod \lambda_i$

A symmetric matrix **A** is positive definite if $\mathbf{x}'\mathbf{A}\mathbf{x} > 0$ for all non-zero \mathbf{x}

A symmetric matrix ${\bf A}$ is positive semi-definite if ${\bf x}'{\bf A}{\bf x} \geq 0~$ for all non-zero ${\bf x}$

Positive definite matrices have positive eigenvalues and positive semi-definite matrices have nonnegative eigenvalues.

If **A** is positive definite then there exists a non-singular **B** such that $\mathbf{A} = \mathbf{B}\mathbf{B}'$.

Idempotent means $\mathbf{P}^2 = \mathbf{P}$

A matrix that is symmetric and idempotent is called a projection matrix.

Projection matrix with rank r:

- (i) has r eigenvalues = 1 and remaining eigenvalues = 0.
- (ii) trace = rank
- (iii) Positive semi-definite

Let **V** be a vector space and let Ω be a subspace. If $\mathbf{Y} \in \mathbf{V}$ then $\mathbf{Y} = w_1 + w_2$ uniquely where $w_1 \in \Omega$ and $w_2 \in \Omega^{\perp}$

2 Random vectors Z

$$E(\mathbf{AZB} + \mathbf{C}) = \mathbf{A}E(\mathbf{Z})\mathbf{B} + \mathbf{C}$$

$$cov(\mathbf{Z}) = [cov(\mathbf{Z}_i, \mathbf{Z}_j)]$$

$$= E[(\mathbf{Z} - E(\mathbf{Z}))(\mathbf{Z} - E(\mathbf{Z}))']$$

$$= E(\mathbf{ZZ}') - E(\mathbf{Z})E(\mathbf{Z})$$

 $cov(\mathbf{Z})$ is positive semi-definite

$$cov(\mathbf{X}, \mathbf{Y}) = cov(\mathbf{X}_i, \mathbf{Y}_i)$$

$$= E[(\mathbf{X} - E\mathbf{X})(\mathbf{Y} - E\mathbf{Y})]'$$

$$cov(\mathbf{A}\mathbf{X}, \mathbf{B}\mathbf{Y}) = \mathbf{A}cov(\mathbf{X}, \mathbf{Y})\mathbf{B}'$$

Quadratic forms: Let $E(\mathbf{X}) = \boldsymbol{\mu}$ and $cov(\mathbf{X}) = \boldsymbol{\Sigma}$.

$$E((\mathbf{X} - \boldsymbol{\mu})'\mathbf{A}(\mathbf{X} - \boldsymbol{\mu})) = \operatorname{tr}(\mathbf{A}\boldsymbol{\Sigma}) \text{ and } E(\mathbf{X}'\mathbf{A}\mathbf{X}) = \operatorname{tr}(\mathbf{A}\boldsymbol{\Sigma}) + \boldsymbol{\mu}'\mathbf{A}\boldsymbol{\mu}.$$

We have three definitions for the multivariate normal distribution \mathbf{Y} $N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$:

(1) The density function of \mathbf{Y} is

$$f_{\mathbf{Y}}(\mathbf{y}) = (2\pi)^{-n/2} |\mathbf{\Sigma}|^{-1/2} exp\{-\frac{1}{2}(\mathbf{y} - \boldsymbol{\mu})'\mathbf{\Sigma}^{-1}(\mathbf{y} - \boldsymbol{\mu})\}.$$

(This definition only works when Σ is positive definite.)

(2) The moment generating function of \mathbf{Y} is

$$M_{\mathbf{Y}}(\mathbf{t}) \equiv E[e^{\mathbf{t}'\mathbf{Y}}] = \exp{\{\boldsymbol{\mu}'\mathbf{t} + \frac{1}{2}\mathbf{t}'\boldsymbol{\Sigma}\mathbf{t}\}}$$

(3) $Y = \mathbf{AZ} + \boldsymbol{\mu}$ where $\mathbf{Z} = (\mathbf{Z}_1, \dots, \mathbf{Z}_k)$ are independent N(0, 1) and $\mathbf{AA}' = \boldsymbol{\Sigma}$.

3 Some facts related to least squares estimation

A least squares estimate of β must satisfy the normal equations $\mathbf{X}'\mathbf{Y} = \mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}}$.

 $\mathbf{a}'\boldsymbol{\beta}$ is estimable if and only if $\mathbf{a} \in \mathcal{R}(\mathbf{X}')$

$$var(\mathbf{a}'\hat{\boldsymbol{\beta}}) = \boldsymbol{\sigma}^2 \mathbf{a}' (\mathbf{X}'\mathbf{X})^{-} \mathbf{a}$$

If $\operatorname{rank}(\mathbf{X}) = r < p$ then we can impose identifiability constraints on the parameters. In vector notation a constraint is $\mathbf{h} = (\mathbf{h}_0, \dots, \mathbf{h}_{p-1})$ such that $\mathbf{h}'\boldsymbol{\beta} = 0$. We need s = p - r constraints and they should be linearly independent of each other and the rows of \mathbf{X} .

4 Generalized least squares

Generalized least squares pertains to the more general assumption $cov(\varepsilon) = \sigma^2 V$ for some known positive definite V.

 $\boldsymbol{\beta}^* = (\mathbf{X}'\mathbf{V}^{-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{V}^{-1}\mathbf{Y}$ is the generalized least squares estimate.

 $\boldsymbol{\beta}^*$ is unbiased and $\operatorname{cov}(\boldsymbol{\beta}^*) = \boldsymbol{\sigma}^2 (\mathbf{X}' \mathbf{V}^{-1} \mathbf{X})^{-1}$

The GLS and OLS estimates are the same if and only if $\mathcal{R}(\mathbf{V}^{-1}\mathbf{X}) = \mathcal{R}(\mathbf{X})$.