1 Linear Algebra

trace: $\operatorname{tr}(\mathbf{A})=\sum_{i} a_{i i}$
$\operatorname{tr}(\mathbf{A}+\mathbf{B})=\operatorname{tr}(\mathbf{A})+\operatorname{tr}(\mathbf{B})$
$\operatorname{tr}(\mathbf{A B})=\operatorname{tr}(\mathbf{B A})$
rank=\# linearly independent rows $=\#$ linearly independent columns
$\operatorname{rank}(\mathbf{A B}) \leq \operatorname{rank}(\mathbf{A})$
$\operatorname{rank}(\mathbf{A B}) \leq \operatorname{rank}(\mathbf{B})$
$\operatorname{rank}(\mathbf{A})=\operatorname{rank}\left(\mathbf{A}^{\prime}\right)=\operatorname{rank}\left(\mathbf{A}^{\prime} \mathbf{A}\right)=\operatorname{rank}\left(\mathbf{A} \mathbf{A}^{\prime}\right)$
Inverses of square matrices with full rank $\mathbf{A}^{-1} \mathbf{A}=\mathbf{A A}^{-1}=I$
Generalized inverses: \mathbf{A}^{-}is a generalized inverse of \mathbf{A} if $\mathbf{A A}^{-} \mathbf{A}=\mathbf{A}$. Generalized inverses are not unique except for square matrices of full rank.
Inner product of vectors $\mathbf{a}, \mathbf{b}: \mathbf{a}^{\prime} \mathbf{b}$
Vector norm: $\|\mathbf{a}\|=\sqrt{\left(\mathbf{a}^{\prime} \mathbf{a}\right)}$.
Orthogonal vectors: $\mathbf{a}^{\prime} \mathbf{b}=0$
\mathbf{A} is an orthogonal matrix if $\mathbf{A}^{-1}=\mathbf{A}^{\prime}$
Eigenvalues and eigenvectors: If $\mathbf{A} \mathbf{x}=\lambda \mathbf{x}$ and $\mathbf{x}^{\prime} \mathbf{x}=1$ then \mathbf{x} is an eigenvector for \mathbf{A} and its corresponding eigenvalue is λ.
For a symmetric matrix \mathbf{A} there exists an orthogonal matrix T such that
(i) $\mathbf{T}^{\prime} \mathbf{A T}=\Lambda$
(ii) $\operatorname{rank}(\mathbf{A})=\#$ non-zero eigenvalues
(iii) $\operatorname{tr}(\mathbf{A})=\Sigma \lambda_{i}$ and $|\mathbf{A}|=\prod \lambda_{i}$

A symmetric matrix \mathbf{A} is positive definite if $\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}>0$ for all non-zero \mathbf{x}
A symmetric matrix \mathbf{A} is positive semi-definite if $\mathbf{x}^{\prime} \mathbf{A x} \geq 0$ for all non-zero \mathbf{x}
Positive definite matrices have positive eigenvalues and positive semi-definite matrices have nonnegative eigenvalues.
If \mathbf{A} is positive definite then there exists a non-singular \mathbf{B} such that $\mathbf{A}=\mathbf{B B}^{\prime}$.

Idempotent means $\mathbf{P}^{2}=\mathbf{P}$
A matrix that is symmetric and idempotent is called a projection matrix.
Projection matrix with rank r :
(i) has r eigenvalues $=1$ and remaining eigenvalues $=0$.
(ii) trace $=$ rank
(iii) Positive semi-definite

Let \mathbf{V} be a vector space and let Ω be a subspace. If $\mathbf{Y} \in \mathbf{V}$ then $\mathbf{Y}=w_{1}+w_{2}$ uniquely where $w_{1} \in \Omega$ and $w_{2} \in \Omega^{\perp}$

2 Random vectors Z

$$
\begin{aligned}
E(\mathbf{A Z B}+\mathbf{C}) & =\mathbf{A} E(\mathbf{Z}) \mathbf{B}+\mathbf{C} \\
\operatorname{cov}(\mathbf{Z}) & =\left[\operatorname{cov}\left(\mathbf{Z}_{i}, \mathbf{Z}_{j}\right)\right] \\
& =E\left[(\mathbf{Z}-E(\mathbf{Z}))(\mathbf{Z}-E(\mathbf{Z}))^{\prime}\right] \\
& =E\left(\mathbf{Z} \mathbf{Z}^{\prime}\right)-E(\mathbf{Z}) E(\mathbf{Z})
\end{aligned}
$$

$\operatorname{cov}(\mathbf{Z})$ is positive semi-definite

$$
\begin{aligned}
\operatorname{cov}(\mathbf{X}, \mathbf{Y}) & =\operatorname{cov}\left(\mathbf{X}_{i}, \mathbf{Y}_{i}\right) \\
& =E[(\mathbf{X}-E \mathbf{X})(\mathbf{Y}-E \mathbf{Y})]^{\prime} \\
\operatorname{cov}(\mathbf{A X}, \mathbf{B Y}) & =\mathbf{A} \operatorname{cov}(\mathbf{X}, \mathbf{Y}) \mathbf{B}^{\prime}
\end{aligned}
$$

Quadratic forms: Let $E(\mathbf{X})=\boldsymbol{\mu}$ and $\operatorname{cov}(\mathbf{X})=\boldsymbol{\Sigma}$.
$E\left((\mathbf{X}-\boldsymbol{\mu})^{\prime} \mathbf{A}(\mathbf{X}-\boldsymbol{\mu})\right)=\operatorname{tr}(\mathbf{A} \boldsymbol{\Sigma})$ and $E\left(\mathbf{X}^{\prime} \mathbf{A X}\right)=\operatorname{tr}(\mathbf{A} \boldsymbol{\Sigma})+\boldsymbol{\mu}^{\prime} \mathbf{A} \boldsymbol{\mu}$.
We have three definitions for the multivariate normal distribution $\mathbf{Y} N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$:
(1) The density function of \mathbf{Y} is

$$
f_{\mathbf{Y}}(\mathbf{y})=(2 \pi)^{-n / 2}|\boldsymbol{\Sigma}|^{-1 / 2} \exp \left\{-\frac{1}{2}(\mathbf{y}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{y}-\boldsymbol{\mu})\right\}
$$

(This definition only works when $\boldsymbol{\Sigma}$ is positive definite.)
(2) The moment generating function of \mathbf{Y} is

$$
M_{\mathbf{Y}}(\mathbf{t}) \equiv E\left[e^{\mathbf{t}^{\prime} \mathbf{Y}}\right]=\exp \left\{\boldsymbol{\mu}^{\prime} \mathbf{t}+\frac{1}{2} \mathbf{t}^{\prime} \boldsymbol{\Sigma} \mathbf{t}\right\}
$$

(3) $Y=\mathbf{A Z}+\boldsymbol{\mu}$ where $\mathbf{Z}=\left(\mathbf{Z}_{1} \ldots, \mathbf{Z}_{k}\right)$ are independent $\mathrm{N}(0,1)$ and $\mathbf{A A}^{\prime}=\boldsymbol{\Sigma}$.

3 Some facts related to least squares estimation

A least squares estimate of $\boldsymbol{\beta}$ must satisfy the normal equations $\mathbf{X}^{\prime} \mathbf{Y}=\mathbf{X}^{\prime} \mathbf{X} \hat{\boldsymbol{\beta}}$.
$\mathbf{a}^{\prime} \boldsymbol{\beta}$ is estimable if and only if $\mathbf{a} \in \mathcal{R}\left(\mathbf{X}^{\prime}\right)$
$\operatorname{var}\left(\mathbf{a}^{\prime} \hat{\boldsymbol{\beta}}\right)=\boldsymbol{\sigma}^{2} \mathbf{a}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-} \mathbf{a}$
If $\operatorname{rank}(\mathbf{X})=r<p$ then we can impose identifiability constraints on the parameters. In vector notation a constraint is $\mathbf{h}=\left(\mathbf{h}_{0}, \ldots, \mathbf{h}_{p-1}\right)$ such that $\mathbf{h}^{\prime} \boldsymbol{\beta}=0$. We need $s=p-r$ constraints and they should be linearly independent of each other and the rows of \mathbf{X}.

4 Generalized least squares

Generalized least squares pertains to the more general assumption $\operatorname{cov}(\boldsymbol{\varepsilon})=\boldsymbol{\sigma}^{2} \mathbf{V}$ for some known positive definite \mathbf{V}.
$\boldsymbol{\beta}^{*}=\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{Y}$ is the generalized least squares estimate.
$\boldsymbol{\beta}^{*}$ is unbiased and $\operatorname{cov}\left(\boldsymbol{\beta}^{*}\right)=\boldsymbol{\sigma}^{2}\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right)^{-1}$
The GLS and OLS estimates are the same if and only if $\mathcal{R}\left(\mathbf{V}^{-1} \mathbf{X}\right)=\mathcal{R}(\mathbf{X})$.

