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Homework Key #4

1. (a) Let Y1, Y2, . . . , Yn be a random sample from a distribution with mean θ and finite
variance σ2. Find a BLUE of θ (and justify that it is, in fact, the Best Unbiased Linear
Estimate).
(b) Explain the statement in lecture notes 8 that RSS/(n − p) is a generalization of the
sample variance.

Solution:(a) The linear model here is Y = 1nθ + ǫ where Y = (Y1, Y2, . . . , Yn)T , 1n ∈ R
n is

the vector whose elements are all 1, and ǫ = (ǫ1, ǫ2, . . . , ǫn)T with E[ǫ] = 0 and V ar(ǫ) = σ2I.
The least squares estimate θ̂ of θ is

θ̂ = (1n

T1n)−11n

TY =
1

n

n
∑

i=1

Yi ≡ Y .

Let a = 1. Because 1n is of full rank, θ̂ = aθ̂ is the BLUE of θ = aθ by applying the
Corrolary in the page 4 of the lecture note 8.

Another solution for (a): Let η = 1nθ (note that this η plays the same role as θ ≡ Xβ
in the page 2 of the lecture note 8). Also let c = 1

n
1n. Then η̂ = 1nY = (Y , . . . , Y ) and

cT η = θ. Thus applying the Theorem in the page 2 of the lecture note 8, the estimate
cT η̂ = Y is the BLUE of cT η = θ.

(b) In part (a) the elementary statistics gives the sample variance Σ(Yi−Y )2

n−1
. This is exactly

the same as RSS/(n − 1) computed in the context of linear model theory. Recall that this
sample variance is the unbiased estimate of σ2. Furthermore note that under the normality
assumption of Yi, this is independent of the mean of data, which is the least squares estimate
of the parameter in the linear model context and RSS/σ2 is distributed as χ2

n−1. Similar
properties for RSS/(n − p) in other linear models hold and hence this is the generalization
of the sample variance.

We will complete the calculations for the simple one-way ANOVA model. By considering
both r = p and r < p, one can understand more clearly the properties of β̂ and θ̂.
2. To begin, consider the full rank model version of the model:

Y2J×1 =



















Y11
...

Y1J

Y21
...

Y2J



















=



















1 0
...
1 0
0 1
...
0 1



















(

µ1

µ2

)

+



















ǫ11
...

ǫ1J

ǫ21
...

ǫ2J



















= X2J×2β2×1 + ǫ2J×1



(a) Interpret the model parameters.
(b) Compute β̂. Is it unique (yes/no)? Explain.
(c) Compute Xβ̂ ≡ θ̂. Is it unique (yes/no)? Explain.
(d) Compute the hat matrix (always unique) P = X(XTX)−1XT .

Solution:(a) The parameter µ1 is the mean of the group 1 and the parameter µ2 is the mean
of the group 2.
(b) The estimate β̂ is unique since the model has full rank and computed as follows.

(

µ̂1

µ̂2

)

= (XTX)−1XTY =

(

J 0
0 J

)

−1 (

ΣY1j

ΣY2j

)

=

(

Y 1

Y 2

)

where Y i is the sample mean of the group i.
(c) We have

θ̂ = Xβ̂ =





















Y 1
...

Y 1

Y 2
...

Y 2





















Because the hat matrix P is unique and PY = Xβ̂ for any least squares estimate β̂ of β,
Xβ̂ is unique.
(d) We have

P = X(XTX)−1X

=



















1 0
...

...
1 0
0 1
...

...
0 1



















(

J 0
0 J

)

−1 (

1 · · · 1 0 · · · 0
0 · · · 0 1 · · · 1

)

=
1

J



















1 · · · 1 0 · · · 0
...

...
...

...
1 · · · 1 0 · · · 0
0 · · · 0 1 · · · 1
...

...
...

...
0 · · · 0 1 · · · 1



















.



3. Now consider a non-full rank version of the model:

Y2J×1 =



















Y11
...

Y1J

Y21
...

Y2J



















=



















1 1 0
...
1 1 0
1 0 1
...
1 0 1























µ
α1

α2



 +



















ǫ11
...

ǫ1J

ǫ21
...

ǫ2J



















= X2J×3β3×1 + ǫ2J×1

(a) Interpret the model parameters.
(b) Recall that β̂ = (XTX)−XTY. There are infinite number of generalized inverses for
XTX. Here are two of them:

(XTX)−1 = J−1





1 −1 0
−1 2 0
0 0 0



 and (XTX)−2 = J−1





0 0 0
0 1 0
0 0 1



 .

Use (XTX)−1 and (XTX)−2 to compute β̂. Is β̂ unique (yes/no)? Explain.
(c) Compute Xβ̂ ≡ θ̂ for both case in (a). Is it unique (yes/no)? Compare your results with
Problem 2(c).
(d) Compute the hat matrix P = X(XTX)−1XT and compare your results with Problem
2(d).

Solution: (a) The parameter µ is the overall mean and αi is the difference between the mean
of the group i and the overall mean.
(b) Since we have

XTY =





ΣY1j + ΣY2j

ΣY1j

ΣY2j



 ,

estimates of β are

β̂1 ≡ (XTX)−1 XTY

=
1

J





1 −1 0
−1 2 0
0 0 0









ΣY1j + ΣY2j

ΣY1j

ΣY2j





=
1

J





ΣY2j

ΣY1j − ΣY2j

0





=





Y2·

Y1· − Y2·

0







and

β̂2 ≡ (XTX)−2 XTY

=
1

J





0 0 0
0 1 0
0 0 1









ΣY1j − ΣY2j

ΣY1j

ΣY2j





=
1

J





0
ΣY1j

ΣY2j





=





0
Y1·

Y2·



 .

Clearly this computation shows that β̂ is not unique.

(c) We have

θ̂1 ≡ Xβ̂1 =





















Y 1·
...

Y 1·

Y 2·
...

Y 2·





















and θ̂2 ≡ Xβ̂2 =





















Y 1·
...

Y 1·

Y 2·
...

Y 2·





















.

Using the same reasoning in Problem 2(c), θ̂ is unique as is more clear in part (d). Moreover
this θ̂ is the same as θ̂ in Problem 2(c).

(d) We have

P1 ≡ X(XTX)−1 XT

=
1

J





















1 1 0
...

...
... 1 0

0 1
...

...
1 0 1

























1 −1 0
−1 2 0
0 0 0









1 · · · · · · · · · · · · 1
1 · · · 1 0 · · · 0
0 · · · 0 1 · · · 1







=
1

J























0 1 0
...

...
...

0 1
...

1 −1
...

...
...

...
1 −1 0



























1 · · · · · · · · · · · · 1
1 · · · 1 0 · · · 0
0 · · · 0 1 · · · 1





=
1

J



















1 · · · 1 0 · · · 0
...

...
...

...
1 · · · 1 0 · · · 0
0 · · · 0 1 · · · 1
...

...
...

...
0 · · · 0 1 · · · 1



















and

P2 ≡ X(XTX)−2 XT

=
1

J
X





0 0 0
0 1 0
0 0 1



XT

=
1

J























0 1 0
...

...
...

... 1 0

... 0 1

...
...

...
0 0 1























XT

=
1

J



















1 · · · 1 0 · · · 0
...

...
...

...
1 · · · 1 0 · · · 0
0 · · · 0 1 · · · 1
...

...
...

...
0 · · · 0 1 · · · 1



















Hence, we have

P1 = P2 = P from 2(d).



4. Let Yi = β0 + β1xi + ǫi, (i = 1, · · · , n) where E[ǫ] = 0 and var(ǫ) = σ2I. Prove that the
least squares estimates of β0 and β1 are uncorrelated if and only if x = 0.

Solution: Let

X =











1 x1

1 x2
...

...
1 xn











and Y =











Y1

Y2
...

Yn











.

We can assume that the design matrix X in this problem is of full rank because the question
implicitly assumes so by saying “the” least squares estimate. Practically, if the design matrix
is not of full rank, then we have the same value of xi for each i and fitting to a linear model
is not reasonable.
Thus, we have

var(β̂) = σ2(XTX)−1

= σ2

(

n Σxi

Σxi Σx2
i

)

−1

=
σ2

nΣx2
i − (Σxi)2

(

Σx2
i −Σxi

−Σxi n

)

Hence, β̂0 and β̂1 are uncorrelated if and only if

−Σxi

nΣx2
i − (Σxi)2

= 0 ⇔ Σxi = 0 ⇔ x = 0

as desired.

5. (a) Let

Yi = β0 + β1(xi1 − x1) + β2(xi2 − x2) + ǫi i = 1, 2, · · · , n

where xj = Σn
i=1xij/n,E[ǫ] = 0 and V ar[ǫ] = σ2I. If β̂1 is the least squares estimate of β1

then show that

var(β̂1) =
σ2

Σn
i=1(xi1 − x1)2(1 − r2

12)

where r12 is the correlation coefficient of pairs (xi1, xi2).
(b) Comment on the impact of the highly correlated predictors of x1 and x2 in linear model.

Solution: (a) From the design matrix

X =











1 x11 − x1 x12 − x2
...

...
...

...
...

...
1 xn1 − x1 xn2 − x2













we compute

X′X =





n 0 0
0 Σ(xi1 − x1)

2 Σ(xi1 − x1)(xi2 − x2)
0 Σ(xi1 − x1)(xi2 − x2) Σ(xi2 − x2)

2



 .

Notice that X′X is block diagonal so that the corresponding diagonal block in the inverse is
the inverse of the diagonal block. Let A be the lower diagonal block of X′X. This is only a
2 × 2 matrix so the first element of its inverse is given by

V ar(β̂1) = σ2 Σ(xi2 − x2)
2

|A|

= σ2 Σ(xi2 − x2)
2

Σ(xi1 − x1)2Σ(xi2 − x2)2 − (Σ(xi1 − x1)(xi2 − x2))2

=
σ2

Σ(xi1 − x1)2 − (Σ(xi1−x1)(xi2−x2))2

Σ(xi2−x2)2

=
σ2

Σ(x1i − x1)2 − Σ(x1i − x1)2 (Σ(x1i−x1)(x2i−x2))2

Σ(x1i−x1)2Σ(x2i−x2)2

=
σ2

Σ(xi1 − x1)2(1 − r2
12)

.

(b) If the predictors of x1 and x2 are highly correlated, r2
12 is close to 1 and var(β̂1) will be

inflated, which is easily seen in the formula derived above.

6. Suppose that Y ∼ N(Xβ, σ2I) where X is n × p of rank p.
(a) Find var(S2).
(b) Evaluate E[(YTAY − σ2)2] for A = 1

n−p+2
(I − X(XTX)−1XT ).

(c) Prove that S2 does not have minimum mean squared error among estimates of σ2.

Solution: (a) Because RSS/σ2 = (n − p)S2/σ2 ∼ χn−p, we have

var(S2) = var

(

σ2

n − p

(n − p)S2

σ2
)

)

=
σ4

(n − p)2
var

(

(n − p)S2

σ2
)

)

=
σ4

(n − p)2
2(n − p) =

2σ4

(n − p)
.

(b) Because RSS = YT (I − P)Y where P is the hat matrix, we have

YTAY =
1

n − p + 2
YT (I − X(XTX)−1XT )Y

=
1

n − p + 2
YT (I − P)Y

=
1

n − p + 2
RSS

=
σ2

n − p + 2

RSS

σ2



so that

E[YTAY] =
σ2(n − p)

n − p + 2
.

Thus, we have

E[(YTAY − σ2)2] = E

[

(

σ2

n − p + 2

RSS

σ2
−

n − p

n − p + 2
σ2 −

2

n − p + 2
σ2

)2
]

= E[

(

σ2

n − p + 2

(

RSS

σ2
− (n − p)

))2

−2

(

σ2

n − p + 2

(

RSS

σ2
− (n − p)

))

2

n − p + 2
σ2

+

(

2

n − p + 2
σ2

)2

]

=
σ4

(n − p + 2)2
var

(

RSS

σ2

)

−
4σ2

(n − p + 2)2
E

[

RSS

σ2
− (n − p)

]

+
4

(n − p + 2)2
σ4

=
σ4

(n − p + 2)2
2(n − p) + 0 +

4σ4

(n − p + 2)2

=
2σ4

n − p + 2
.

(c) The mean squared error MSE(S2) of S2 is greater than the mean squared error MSE(YTAY)
of YTAY because

MSE(S2) = var(S2) =
2σ4

n − p
>

2σ4

n − p + 2
= MSE(YTAY).

Hence the claim follows.


