Biostatistics 533 Classical Theory of Linear Models Spring 2007 Midterm

Name: _____

Problems do not have equal value and some problems will take more time than others. Spend your time wisely. This test has six pages including this title page.

1	2	3	4	5	6	Total
20	5	10	20	10	15	80
	1 20	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				

All problems pertain to the linear model

$$\mathbf{Y}_{n imes 1} = \mathbf{X}_{n imes p} \boldsymbol{\beta}_{p imes 1} + \boldsymbol{\varepsilon}_{n imes 1}$$

with $E[\boldsymbol{\varepsilon}] = \mathbf{0}$, $\operatorname{cov}(\boldsymbol{\varepsilon}) = \sigma^2 \mathbf{I}$.

1. (20 points) Let \mathbf{P} be the projection operator onto $\mathcal{R}(\mathbf{X})$. For least-squares estimation, recall that $\hat{\boldsymbol{\varepsilon}} = (\mathbf{I} - \mathbf{P})\mathbf{Y}$. Derive (a) $E(\hat{\boldsymbol{\varepsilon}})$

(b) $\operatorname{cov}(\hat{\boldsymbol{\varepsilon}})$

(c) $\operatorname{cov}(\hat{\boldsymbol{\varepsilon}}, \mathbf{PY})$

(d) E[RSS]

2. (5 points) Suppose $\hat{\boldsymbol{\beta}}_1 \neq \hat{\boldsymbol{\beta}}_2$ are two different least-squares estimates of $\boldsymbol{\beta}$. Show there are infinitely many least-squares estimates of $\boldsymbol{\beta}$.

3. (10 points) Suppose rank(\mathbf{X}) < p. Show $\boldsymbol{\beta}$ is not estimable. That is, show there is no matrix \mathbf{C} such that \mathbf{CY} is an unbiased estimate of $\boldsymbol{\beta}$. (Equivalently, show that if $\boldsymbol{\beta}$ is estimable then \mathbf{X} has full rank.)

- 4. (20 points)
- (a) What does BLUE stand for?
- (b) What does BLUE mean?

(c) We proved in class that for the least squares estimator $\hat{\boldsymbol{\theta}}$ of the mean vector of \mathbf{Y} , $\mathbf{c}'\hat{\boldsymbol{\theta}}$ is the BLUE of $\mathbf{c}'\boldsymbol{\theta}$ for any \mathbf{c} . Using this fact in the case rank $(\mathbf{X}) = p$, prove that $\mathbf{d}'\hat{\boldsymbol{\beta}}$ is the BLUE of $\mathbf{d}'\boldsymbol{\beta}$.

5. (10 points) Since $\operatorname{cov}(\boldsymbol{\varepsilon}) = \sigma^2 \mathbf{I}$, one might wonder whether the fitted residuals can also be uncorrelated with the same variance. That is, one might wonder whether $\operatorname{cov}(\hat{\boldsymbol{\varepsilon}})$ can have the form $\tau^2 \mathbf{I}$. Prove that $\operatorname{cov}(\hat{\boldsymbol{\varepsilon}}) = \tau^2 \mathbf{I}$ for some $\tau^2 \ge 0$ if and only if $\hat{\mathbf{Y}} = \mathbf{Y}$.

- 6. (15 points) Circle true or false after each statement
- $\hat{\mathbf{Y}}$, the least-squares estimate, is always unique

TRUE FALSE

 $\hat{\boldsymbol{\beta}}$, the least-squares estimate, is always unique

TRUE FALSE

The result that $\hat{\mathbf{Y}}$ is the BLUE of $E[\mathbf{Y}]$ requires the assumption that $\boldsymbol{\varepsilon} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I})$

TRUE FALSE