Biostatistics 533
Classical Theory of Linear Models
Spring 2007
Midterm

Name: KEY

Problems do not have equal value and some problems will take more time than others. Spend your time wisely. This test has six pages including this title page.

Problem	1	2	3	4	5	6	Total
Possible Points	20	5	10	20	10	15	80
Score							

All problems pertain to the linear model

$$
\mathbf{Y}_{n \times 1}=\mathbf{X}_{n \times p} \boldsymbol{\beta}_{p \times 1}+\boldsymbol{\varepsilon}_{n \times 1}
$$

with $E[\varepsilon]=\mathbf{0}, \operatorname{cov}(\boldsymbol{\varepsilon})=\sigma^{2} \mathbf{I}$.

1. (20 points) Let \mathbf{P} be the projection operator onto $\mathcal{R}(\mathbf{X})$. For least-squares estimation, recall that $\hat{\boldsymbol{\varepsilon}}=(\mathbf{I}-\mathbf{P}) \mathbf{Y}$. Derive (a) $E(\hat{\boldsymbol{\varepsilon}})$
$E(\hat{\varepsilon})=E((\mathbf{I}-\mathbf{P}) \mathbf{Y})=(\mathbf{I}-\mathbf{P}) E(\mathbf{Y})=(\mathbf{I}-\mathbf{P}) \mathbf{X} \boldsymbol{\beta}=$ $\mathbf{X} \boldsymbol{\beta}-\mathbf{P X} \boldsymbol{\beta}=\mathbf{X} \boldsymbol{\beta}-\mathbf{X} \boldsymbol{\beta}=0$
(using $\mathbf{P X}=\mathbf{X}$)
(b) $\operatorname{cov}(\hat{\boldsymbol{\varepsilon}})$
$\operatorname{cov}(\hat{\boldsymbol{\varepsilon}})=\operatorname{cov}((\mathbf{I}-\mathbf{P}) \mathbf{Y})=(\mathbf{I}-\mathbf{P}) \operatorname{cov}(\mathbf{Y})(\mathbf{I}-\mathbf{P})^{\prime}=(\mathbf{I}-$ $\mathbf{P}) \sigma^{2} \mathbf{I}(\mathbf{I}-\mathbf{P})^{\prime}=\sigma^{2}(\mathbf{I}-\mathbf{P})(\mathbf{I}-\mathbf{P})^{\prime}=\sigma^{2}(\mathbf{I}-\mathbf{P})$ since $\mathbf{I}-\mathbf{P}$ is symmetric and idempotent.
(c) $\operatorname{cov}(\hat{\boldsymbol{\varepsilon}}, \mathbf{P Y})$
$\operatorname{cov}(\hat{\varepsilon}, \mathbf{P Y})=\operatorname{cov}((\mathbf{I}-\mathbf{P}) \mathbf{Y}, \mathbf{P Y})=(\mathbf{I}-\mathbf{P}) \operatorname{cov}(\mathbf{Y}) \mathbf{P}^{\prime}=$ $\sigma^{2} \mathbf{I}(\mathbf{I}-\mathbf{P}) \mathbf{P}=\sigma^{2}\left(\mathbf{P}-\mathbf{P}^{2}\right)=\sigma^{2}(\mathbf{P}-\mathbf{P})=\mathbf{0}$ since \mathbf{P} is symmetric and idempotent.
(d) $E[R S S]$
$E[R S S]=E\left(\hat{\varepsilon}^{\prime} \hat{\boldsymbol{\varepsilon}}\right)=E\left(\mathbf{Y}^{\prime}(\mathbf{I}-\mathbf{P})^{\prime}(\mathbf{I}-\mathbf{P}) \mathbf{Y}\right)=$
$E\left(\mathbf{Y}^{\prime}(\mathbf{I}-\mathbf{P}) \mathbf{Y}\right)=\operatorname{tr}\left((\mathbf{I}-\mathbf{P}) \sigma^{2} \mathbf{I}\right)+(\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{I}-\mathbf{P})(\mathbf{X} \boldsymbol{\beta})$
We've used the fact that $\mathbf{I}-\mathbf{P}$ is symmetric and idempotent, and we've used our result for the expectation of a quadratic form. The second term is 0 because $(\mathbf{I}-\mathbf{P}) \mathbf{X}$ is 0 . So continue:
$E[R S S]=\sigma^{2} \operatorname{tr}((\mathbf{I}-\mathbf{P}))=\sigma^{2}(\operatorname{tr}(\mathbf{I})-\operatorname{tr}(\mathbf{P}))=\sigma^{2}(n-\operatorname{rank}(\mathbf{P}))$
2. (5 points) Suppose $\hat{\boldsymbol{\beta}}_{1} \neq \hat{\boldsymbol{\beta}}_{2}$ are two different least-squares estimates of $\boldsymbol{\beta}$. Show there are infinitely many least-squares estimates of $\boldsymbol{\beta}$.

We have $\hat{\mathbf{Y}}=\mathbf{X} \hat{\boldsymbol{\beta}}_{1}$ and $\hat{\mathbf{Y}}=\mathbf{X} \hat{\boldsymbol{\beta}}_{2}$ since $\hat{\boldsymbol{\beta}}_{1}$ and $\hat{\boldsymbol{\beta}}_{2}$ are both least-squares estimates. Let $\hat{\boldsymbol{\beta}}_{p}=p \hat{\boldsymbol{\beta}}_{1}+(1-p) \hat{\boldsymbol{\beta}}_{2}$ for any number $p \in(0,1)$. Then $\mathbf{X} \hat{\boldsymbol{\beta}}_{p}=\mathbf{X} p \hat{\boldsymbol{\beta}}_{1}+\mathbf{X}(1-p) \hat{\boldsymbol{\beta}}_{2}=$ $p \hat{\mathbf{Y}}+(1-p) \hat{\mathbf{Y}}=\hat{\mathbf{Y}}$ so $\hat{\boldsymbol{\beta}}_{p}$ is also a solution for any $p \in(0,1)$. This gives infinitely many solutions.
3. (10 points) Suppose $\operatorname{rank}(\mathbf{X})<p$. Show $\boldsymbol{\beta}$ is not estimable. That is, show there is no matrix \mathbf{C} such that $\mathbf{C Y}$ is an unbiased estimate of $\boldsymbol{\beta}$. (Equivalently, show that if $\boldsymbol{\beta}$ is estimable then \mathbf{X} has full rank.)

Solution 1: Suppose there exists a matrix \mathbf{C} such that $E(\mathbf{C Y})=$ $\boldsymbol{\beta} . E(\mathbf{C Y})=\mathbf{C} E(\mathbf{Y})=\mathbf{C X} \boldsymbol{\beta}$. So $\mathbf{C X} \boldsymbol{\beta}=\boldsymbol{\beta}$ for all $\boldsymbol{\beta}$. Therefore $\mathbf{C X}=\mathbf{I}_{p \times p}$. We have $\operatorname{rank}(\mathbf{I})=p$ but also $\operatorname{rank}(\mathbf{I}) \leq$ $\operatorname{rank}(\mathbf{X})<p$. Contradiction. Such a \mathbf{C} cannot exist.
If you are not comfortable with proof by contradiction, you might prefer this way of saying things:
Solution 2: If $\boldsymbol{\beta}$ is estimable then in particular each β_{i} is estimable. That is, $\mathbf{e}_{i}^{\prime} \boldsymbol{\beta}$ is estimable for all p-vectors \mathbf{e}_{i} that are all 0 's except for a 1 in the $i^{\text {th }}$ position. That means each \mathbf{e}_{i} is in the row space of $\mathbf{X} \Rightarrow \operatorname{rank}(\mathbf{X})$ must be at least p. but \mathbf{X} is $n \times p \Rightarrow \mathbf{X}$ has rank at most p. Therefore the rank of \mathbf{X} is p $-\mathbf{X}$ has full rank.
4. (20 points)
(a) What does BLUE stand for?

Best Linear Unbiased Estimate
(b) What does BLUE mean?

An estimator is BLUE for a parameter θ if it is linear, unbiased, and has minimum variance among all linear unbiased estimators.
(c) We proved in class that for the least squares estimator $\hat{\boldsymbol{\theta}}$ of the mean vector of $\mathbf{Y}, \mathbf{c}^{\prime} \boldsymbol{\theta}$ is the BLUE of $\mathbf{c}^{\prime} \boldsymbol{\theta}$ for any \mathbf{c}. Using this fact in the case $\operatorname{rank}(\mathbf{X})=p$, prove that $\mathbf{d}^{\prime} \hat{\boldsymbol{\beta}}$ is the BLUE of $\mathbf{d}^{\prime} \boldsymbol{\beta}$.

In the full rank case, $\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}$ so $\mathbf{d}^{\prime} \hat{\boldsymbol{\beta}}=\mathbf{d}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}=$ $\mathbf{c}^{\prime} \mathbf{Y}$ where $\mathbf{c}^{\prime}=\mathbf{d}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$. Therefore $\mathbf{d}^{\prime} \hat{\boldsymbol{\beta}}$ is linear.
Also, $E\left[\mathbf{d}^{\prime} \hat{\boldsymbol{\beta}}\right]=E\left[\mathbf{d}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}\right]=\mathbf{d}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} E[\mathbf{Y}]=$ $\mathbf{d}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}=\mathbf{d}^{\prime} \boldsymbol{\beta}$, so $\mathbf{d}^{\prime} \boldsymbol{\beta}$ is unbiased.

$$
\begin{aligned}
\mathbf{c}^{\prime} \boldsymbol{\theta} & =\mathbf{d}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} E[\mathbf{Y}]=\mathbf{d}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}=\mathbf{d}^{\prime} \boldsymbol{\beta} \\
\mathbf{c}^{\prime} \hat{\boldsymbol{\theta}} & =\mathbf{d}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \hat{\boldsymbol{\theta}}=\mathbf{d}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y} \\
& =\mathbf{d}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}=\mathbf{d}^{\prime} \hat{\boldsymbol{\beta}}
\end{aligned}
$$

So by the theorem, $\mathbf{d}^{\prime} \hat{\boldsymbol{\beta}}$ (which equals $\mathbf{c}^{\prime} \hat{\boldsymbol{\theta}}$) is BLUE for $\mathbf{d}^{\prime} \boldsymbol{\beta}$ (which equals $\mathbf{c}^{\prime} \boldsymbol{\theta}$).
5. (10 points) Since $\operatorname{cov}(\boldsymbol{\varepsilon})=\sigma^{2} \mathbf{I}$, one might wonder whether the fitted residuals can also be uncorrelated with the same variance. That is, one might wonder whether $\operatorname{cov}(\hat{\boldsymbol{\varepsilon}})$ can have the form $\tau^{2} \mathbf{I}$. Prove that $\operatorname{cov}(\hat{\boldsymbol{\varepsilon}})=\tau^{2} \mathbf{I}$ for some $\tau^{2} \geq 0$ if and only if $\hat{\mathbf{Y}}=\mathbf{Y}$.
\Leftarrow : If $\hat{\mathbf{Y}}=\mathbf{Y}$ then $\hat{\boldsymbol{\varepsilon}}=\mathbf{0}$ so $\operatorname{cov}(\hat{\boldsymbol{\varepsilon}})=\mathbf{0}=\tau^{2} \mathbf{I}$ for $\tau^{=} 0$.
\Rightarrow Solution 1: Suppose $\operatorname{cov}(\hat{\boldsymbol{\varepsilon}})=\tau^{2} \mathbf{I}$. In general $\operatorname{cov}(\hat{\boldsymbol{\varepsilon}})=$ $\sigma^{2}(\mathbf{I}-\mathbf{P})$. If $\sigma^{2}(\mathbf{I}-\mathbf{P})=\tau^{2} \mathbf{I}$, then $\mathbf{P}=\frac{\sigma^{2}-\tau^{2}}{\sigma^{2}} \mathbf{I}$. Then $\mathbf{P Y}=$ $\hat{\mathbf{Y}}=\frac{\sigma^{2}-\tau^{2}}{\sigma^{2}} \mathbf{Y} \Rightarrow \frac{\sigma^{2}-\tau^{2}}{\sigma^{2}} \mathbf{Y} \in \mathcal{R}(\mathbf{X}) \Rightarrow \mathbf{Y} \in \mathcal{R}(\mathbf{X}) \Rightarrow \hat{\mathbf{Y}}=\mathbf{Y}$.
\Rightarrow Solution 2: Suppose $\operatorname{cov}(\hat{\boldsymbol{\varepsilon}})=\tau^{2} \mathbf{I}$. In general $\operatorname{cov}(\hat{\boldsymbol{\varepsilon}})=$ $\sigma^{2}(\mathbf{I}-\mathbf{P})$. If $\sigma^{2}(\mathbf{I}-\mathbf{P})=\tau^{2} \mathbf{I}$, then $\mathbf{P}=\frac{\sigma^{2}-\tau^{2}}{\sigma^{2}} \mathbf{I}$. Since $\mathbf{P}=\mathbf{P}^{2}$, either $\frac{\sigma^{2}-\tau^{2}}{\sigma^{2}}=0$ or $\frac{\sigma^{2}-\tau^{2}}{\sigma^{2}}=1$. We can rule out $\mathbf{P}=0 \mathbf{I}$ since then \mathbf{X} has rank 0. (\mathbf{X} would be a matrix of 0 's and you would not actually have a model for your data.) Therefore, $\mathbf{P}=\mathbf{I}$ and $\mathbf{P Y}=\hat{\mathbf{Y}}=\mathbf{Y}$.
6. (15 points) Circle true or false after each statement $\hat{\mathbf{Y}}$, the least-squares estimate, is always unique

TRUE

$\hat{\boldsymbol{\beta}}$, the least-squares estimate, is always unique
FALSE
The result that $\hat{\mathbf{Y}}$ is the BLUE of $E[\mathbf{Y}]$ requires the assumption that $\boldsymbol{\varepsilon} \sim N_{n}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$

FALSE

