Homework Assignment #2

Problem 1

Prove if a is a vector of constants with the same dimension of the random vector X, then

$$E[(\boldsymbol{X} - \boldsymbol{a})(\boldsymbol{X} - \boldsymbol{a})^T] = Var[\boldsymbol{X}] + (E[\boldsymbol{X}] - \boldsymbol{a})(E[\boldsymbol{X}] - \boldsymbol{a})^T.$$

If $Var[X] = (\sigma_{ij})$, show

$$E[\|X - a\|^2] = \sum_{i} \sigma_{ij} + \|E[X] - a]\|^2.$$

Solution: Let $E[X] = \mu$. We have

$$\begin{split} E[(\boldsymbol{X} - \boldsymbol{a})(\boldsymbol{X} - \boldsymbol{a})^T] &= E[(\boldsymbol{X} - \boldsymbol{\mu} + \boldsymbol{\mu} - \boldsymbol{a})(\boldsymbol{X} - \boldsymbol{\mu} + \boldsymbol{\mu} - \boldsymbol{a})^T] \\ &= E[(\boldsymbol{X} - \boldsymbol{\mu})(\boldsymbol{X} - \boldsymbol{\mu})^T + (\boldsymbol{X} - \boldsymbol{\mu})(\boldsymbol{\mu} - \boldsymbol{a})^T + (\boldsymbol{\mu} - \boldsymbol{a})(\boldsymbol{X} - \boldsymbol{\mu})^T + (\boldsymbol{\mu} - \boldsymbol{a})(\boldsymbol{\mu} - \boldsymbol{a})^T] \\ &= E[(\boldsymbol{X} - \boldsymbol{\mu})(\boldsymbol{X} - \boldsymbol{\mu})^T] + E[\boldsymbol{X} - \boldsymbol{\mu}](\boldsymbol{\mu} - \boldsymbol{a})^T + (\boldsymbol{\mu} - \boldsymbol{a})E[(\boldsymbol{X} - \boldsymbol{\mu})^T] + (\boldsymbol{\mu} - \boldsymbol{a})(\boldsymbol{\mu} - \boldsymbol{a})^T \\ &= Var[\boldsymbol{X}] + 0 + 0 + (\boldsymbol{\mu} - \boldsymbol{a})(\boldsymbol{\mu} - \boldsymbol{a})^T \\ &= Var[\boldsymbol{X}] + (E[\boldsymbol{X}] - \boldsymbol{a})(E[\boldsymbol{X}] - \boldsymbol{a})^T. \end{split}$$

Note that the trace of a scalar is a scalar itself. Using this and applying the previous result, we have

$$E[\|\boldsymbol{X} - \boldsymbol{a}\|^{2}] = E[\operatorname{trace}(\|\boldsymbol{X} - \boldsymbol{a}\|^{2})]$$

$$= E[\operatorname{trace}((\boldsymbol{X} - \boldsymbol{a})^{T}(\boldsymbol{X} - \boldsymbol{a}))]$$

$$= E[\operatorname{trace}((\boldsymbol{X} - \boldsymbol{a})(\boldsymbol{X} - \boldsymbol{a})^{T})]$$

$$= \operatorname{trace}(E[(\boldsymbol{X} - \boldsymbol{a})(\boldsymbol{X} - \boldsymbol{a})^{T}])$$

$$= \operatorname{trace}(Var[\boldsymbol{X}] + (E[\boldsymbol{X}] - \boldsymbol{a})(E[\boldsymbol{X}] - \boldsymbol{a})^{T})$$

$$= \operatorname{trace}(Var[\boldsymbol{X}]) + \operatorname{trace}((E[\boldsymbol{X}] - \boldsymbol{a})(E[\boldsymbol{X}] - \boldsymbol{a})^{T}))$$

$$= \sum_{i} \sigma_{ij} + \operatorname{trace}((E[\boldsymbol{X}] - \boldsymbol{a})^{T}E[\boldsymbol{X}] - \boldsymbol{a}))$$

$$= \sum_{i} \sigma_{ij} + \operatorname{trace}(\|E[\boldsymbol{X}] - \boldsymbol{a}]\|^{2})$$

$$= \sum_{i} \sigma_{ij} + \|E[\boldsymbol{X}] - \boldsymbol{a}\|^{2}.$$

Let $\boldsymbol{X}=(X_1,X_2,\ldots,X_n)^T$ be a vector of random variables and let $Y_1=X_1,Y_i=X_i-X_{i-1} (i=2,3,\ldots,n)$. If Y_i are mutually independent random variables each with unit variance, find $Var(\boldsymbol{X})$.

Solution: We have that $X_i = \sum_{n=1}^i Y_n$, or in matrix notation, $\boldsymbol{X} = A\boldsymbol{Y}$, where

$$A = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & 1 & 0 & \cdots & 0 \\ 1 & 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix}$$

and

$$Var[\boldsymbol{X}] = Var[A\boldsymbol{Y}] = AVar[\boldsymbol{Y}]A^T = AIA^T = AA^T$$

Therefore

$$Var[\mathbf{X}] = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 2 & 2 & \cdots & 2 \\ 1 & 2 & 3 & \cdots & 3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 2 & 3 & \cdots & n \end{bmatrix}.$$

If $X_1, X_2, ..., X_n$ are random variables satisfying $X_{i+1} = \rho X_i$ where ρ is a constant, and $Var(X_1) = \sigma^2$, find Var(X).

Solution: Let

$$\boldsymbol{a} = \begin{bmatrix} 1 \\ \rho \\ \rho^2 \\ \vdots \\ \rho^{n-1} \end{bmatrix}.$$

Then $X = aX_1$ and we have

$$Var(\mathbf{X}) = Var(\mathbf{a}X_1)$$

$$= \mathbf{a}Var(X_1)\mathbf{a}^T$$

$$= \sigma^2\mathbf{a}\mathbf{a}^T$$

$$= \begin{bmatrix} 1 & \rho & \rho^2 & \cdots & \rho^{n-1} \\ \rho & \rho^2 & \rho^3 & \cdots & \rho^n \\ \rho^2 & \rho^3 & \rho^3 & \cdots & \rho^{n+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \rho^{n-1} & \rho^n & \rho^{n+1} & \cdots & \rho^{2n-2} \end{bmatrix}.$$

If X_1, X_2, \ldots, X_n are independent random variables with common mean μ and variances $\sigma_1^2, \sigma_2^2, \ldots, \sigma_n^2$, find $Var[\bar{X}]$.

Solution:

$$Var[\bar{X}] = Var\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right]$$
$$= \frac{1}{n^{2}}Var\left[\sum_{i=1}^{n}X_{i}\right]$$
$$= \frac{\sum_{i=1}^{n}\sigma_{i}^{2}}{n^{2}}.$$

Let $\boldsymbol{X}=(X_1,X_2,\ldots,X_n)^T$ and $\boldsymbol{1_n}\in\mathbb{R}^n$ be the vector whose elements are all 1. Define $\bar{J_n}=\boldsymbol{1_n}\boldsymbol{1_n^T}/n$. Recall from the lecture note that

$$\sum_{i=1}^{n} (X_i - \bar{X})^2 = \boldsymbol{X}^T A \boldsymbol{X}$$

where

$$A = I_n - \bar{J}_n$$

and that

$$A\mathbf{1}_{n}=0.$$

Therefore

$$E[\sum_{i=1}^{n} (X_i - \bar{X})^2] = E[\boldsymbol{X}^T A \boldsymbol{X}]$$

$$= \operatorname{trace}(ACov(\boldsymbol{X})) + (\mu \mathbf{1}_n)^T A(\mu \mathbf{1}_n)$$

$$= \operatorname{trace}(A\operatorname{diag}(\sigma_1^2, \sigma_2^2, \dots, \sigma_n^2)) + 0$$

$$= \frac{n-1}{n} \sum_{i=1}^{n} \sigma_i^2$$

and

$$E\left[\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n(n-1)}\right] = \frac{1}{n(n-1)} \frac{n-1}{n} \sum_{i=1}^{n} \sigma_i^2$$
$$= \frac{\sum_{i=1}^{n} \sigma_i^2}{n^2}$$
$$= Var[\bar{X}]$$

Let X_1, X_2, \dots, X_n be independently and identically distributed as $N(\theta, \sigma^2)$. Define

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

and

$$Q = \frac{1}{2(n-1)} \sum_{i=1}^{n} (X_{i+1} - X_i)^2.$$

(a)

Prove that $var[S^2] = 2\sigma^4/(n-1)$.

(b)

Show that Q is an unbiased estimator of σ^2 .

(c)

Find the variance of Q and show that as $n \to \infty$ the efficiency of Q relative to S^2 is $\frac{2}{3}$.

Solution:

1. Let $\boldsymbol{X} = (X_1, X_2, \dots, X_n)^T$ and $\boldsymbol{1_n} \in \mathbb{R}^n$ be the vector whose elements are all 1. Define $\bar{J_n} = \boldsymbol{1_n} \boldsymbol{1_n}^T / n$ and $\boldsymbol{\theta} = \theta \boldsymbol{1_n}$.

$$\sum_{i=1}^{n} (X_i - \bar{X})^2 = \boldsymbol{X}^T A \boldsymbol{X}$$

where

$$A = I_n - \bar{J}_n.$$

Because A is a symmetric matrix and X_1, X_2, \ldots, X_n is an IID sample, we can apply Theorem 1.6 that

$$var[\mathbf{X}^T A \mathbf{X}] = (\mu_4 - 3\mu_2^2)\mathbf{a}^T \mathbf{a} + 2\mu_2^2 \operatorname{trace}(A^2) + 4\mu_2 \mathbf{\theta}^T A^2 \mathbf{\theta} + 4\mu_3 \mathbf{\theta}^T A \mathbf{a}$$

where μ_i represents the ith central moment of the X_i 's and \boldsymbol{a} is a vector of the diagonal elements of A. For the normal distribution

$$\mu_3 = 0$$

and

$$\mu_4 = 3\mu_2^2 = 3\sigma^4$$

Therefore

$$var[\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}] = (\mu_{4} - 3\mu_{2}^{2})\boldsymbol{a}^{T}\boldsymbol{a} + 2\mu_{2}^{2}\operatorname{trace}(A^{2}) + 4\mu_{2}\boldsymbol{\theta}^{T}A^{2}\boldsymbol{\theta} + 4\mu_{3}\boldsymbol{\theta}^{T}A\boldsymbol{a}$$

$$= (3\mu_{2}^{2} - 3\mu_{2}^{2})\boldsymbol{a}^{T}\boldsymbol{a} + 2\mu_{2}^{2}\operatorname{trace}((I_{n} - \bar{J}_{n})^{2}) + 4\mu_{2}\boldsymbol{\theta}^{T}(I_{n} - \bar{J}_{n})^{2}\boldsymbol{\theta} + 4 \times 0 \times \boldsymbol{\theta}^{T}A\boldsymbol{a}$$

$$= 2\mu_{2}^{2}\operatorname{trace}(I_{n} - \bar{J}_{n})$$

$$= 2\sigma^{4}(n-1)$$

Note that $\boldsymbol{\theta}^T (I_n - \bar{J}_n)^2 \boldsymbol{\theta} = \boldsymbol{\theta}^T (I_n - \bar{J}_n) \boldsymbol{\theta} = 0$. Therefore

$$var\left[\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}\right] = \frac{1}{(n-1)^{2}}var\left[\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}\right]$$
$$= \frac{1}{(n-1)^{2}}2\sigma^{4}(n-1)$$
$$= \frac{2\sigma^{4}}{n-1}$$

2.

$$E[Q] = E\left[\frac{1}{2(n-1)} \sum_{i=1}^{n-1} (X_{i+1} - X_i)^2\right]$$

$$= \frac{1}{2(n-1)} E\left[\sum_{i=1}^{n-1} (X_{i+1}^2 - 2X_{i+1}X_i + X_i^2)\right]$$

$$= \frac{1}{2(n-1)} \sum_{i=1}^{n-1} (\mu^2 + \sigma^2 - 2\mu^2 + \mu^2 + \sigma^2)$$

$$= \frac{1}{2(n-1)} \sum_{i=1}^{n-1} (2\sigma^2)$$

$$= \sigma^2$$

3. Let $\mathbf{Y} = (Y_1, Y - 2, \dots, Y_n)^T$ where $Y_i = X_{i+1} - X_i$ for $i = 1, \dots, n-1$ and $Y_n = 0$. Then $\mathbf{Y} = A\mathbf{X}$ where

$$A = \begin{bmatrix} -1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 \\ 0 & 0 & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{bmatrix}.$$

Therefore

$$\sum_{i=1}^{n-1} (X_{i+1} - X_i)^2 = \mathbf{X}' A^* \mathbf{X}$$

where

$$A^* = A'A = \begin{bmatrix} 1 & -1 & 0 & \cdots & 0 & 0 \\ -1 & 2 & -1 & \cdots & 0 & 0 \\ 0 & -1 & 2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2 & -1 \\ 0 & 0 & 0 & \cdots & -1 & 1 \end{bmatrix}$$

and

$$A^{*2} = \begin{bmatrix} 2 & -3 & 1 & 0 & \cdots & 0 & 0 \\ -3 & 6 & -4 & 1 & \cdots & 0 & 0 \\ 1 & -4 & 6 & -4 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 6 & -3 \\ 0 & 0 & 0 & 0 & \cdots & -3 & 2 \end{bmatrix}$$

Since A^* is a symmetric matrix, we can use the same variance formula as in part (a)

$$var[\sum_{i=1}^{n-1}(X_{i+1}-X_i)^2] = (\mu_4-3\mu_2^2)\boldsymbol{a}^{*T}\boldsymbol{a}^* + 2\mu_2^2 \operatorname{trace}(A^{*2}) + 4\mu_2\boldsymbol{\theta}^T A^{*2}\boldsymbol{\theta} + 4\mu_3\boldsymbol{\theta}^T A^*\boldsymbol{a}^*$$

where a^* is a vector of the diagonal elements of A^* ,

$$(\mu_4 - 3\mu_2^2) \boldsymbol{a^*}' \boldsymbol{a^*} = 0$$

and

$$4\mu_3 \boldsymbol{\theta}^T A^* \boldsymbol{a}^*$$

Also

$$\boldsymbol{\theta}^T A^* = \theta \mathbf{1}_n^T A^* = 0$$

because the columns of A^* sum to 0. Therefore

$$var\left[\sum_{i=1}^{n-1} (X_{i+1} - X_i)^2\right] = 2\mu_2^2 \operatorname{trace}(A^{*2})$$

$$= 2\sigma^4 (6(n-2) + 4)$$

$$= 2\sigma^4 (6n-8)$$

and

$$var[Q] = \frac{\sigma^4(6n-8)}{2(n-1)^2}$$

We see that

$$\frac{var[S^2]}{var[Q]} = \frac{\frac{2\sigma^4}{n-1}}{\frac{\sigma^4(6n-8)}{2(n-1)^2}}$$
$$= \frac{4n-4}{6n-8}$$
$$\rightarrow \frac{2}{3}$$

asymptotically, Q is $\frac{2}{3}$ as efficient as $S^2.$

Problem 6

Let $\mathbf{X} = (X_1, X_2, X_3)^T$ with

$$Var[\mathbf{X}] = \left[\begin{array}{ccc} 5 & 2 & 3 \\ 2 & 3 & 0 \\ 3 & 0 & 3 \end{array} \right].$$

(a)

Find the variance of $X_1 - 2X_2 + X_3$.

(b)

Find the variance matrix of $\mathbf{Y} = (Y_1, Y_2)^T$ where $Y_1 = X_1 + X_2$ and $Y_2 = X_1 + X_2 + X_3$.

Solution:

1. Let $\mathbf{a} = (1, -2, 1)^T$. Then $X_1 - 2X_2 + X_3 = \mathbf{a}^T \mathbf{X}$ and

$$Var[X_1 - 2X_2 + X_3] = Var[\boldsymbol{a}^T \boldsymbol{X}] = \boldsymbol{a}^T Var[\boldsymbol{X}] \boldsymbol{a} = 18.$$

2. Let

$$B = \left[\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 1 \end{array} \right].$$

Then $\boldsymbol{Y} = B\boldsymbol{X}$ and

$$Var[\mathbf{Y}] = Var[B\mathbf{X}] = BVar[\mathbf{X}]B^T = \left[egin{array}{cc} 12 & 15 \\ 15 & 21 \end{array}
ight].$$