Homework #3

Problem 1

Let $\mathbf{Y} \sim N(\mu, \sigma^2 \mathbf{I})$. Define matrices $\mathbf{A}_1 = \frac{1}{3} \mathbf{J}_3 \mathbf{J}_3^T$, $\mathbf{A}_2 = \frac{1}{2} \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, and $\mathbf{A}_3 == \frac{1}{6} \begin{bmatrix} 1 & 1 & -2 \\ 1 & 1 & -2 \\ -2 & -2 & 4 \end{bmatrix}$.

Define $Q_i = \mathbf{Y}^T \mathbf{A}_i \mathbf{Y}$.

(a) Find distributions of Q_1, Q_2, Q_3 .

(b) Prove or disprove: the Q_i are pairwise independent.

Solution: (a) Let $\mu = (\mu_1, \mu_2, \mu_3)^T$. It is easy to check that A_i satisfy that

$$A_i^T = A_i,$$

$$A_i^2 = A_i,$$

$$rank[A_i] = 1.$$

Thus we can apply Theorem in page 6 of Lecture 6 to obtain

$$\frac{\mathbf{Y}^T \mathbf{A}_i \mathbf{Y}}{\sigma^2} \sim \chi_1^2 \left(\frac{\mu^t \mathbf{A}_i \mu}{2\sigma^2} \right).$$

Because

$$\frac{\mu^t \mathbf{A}_1 \mu}{2\sigma^2} = \frac{\left(\sum_{i=1}^3 \mu_i\right)^2}{6\sigma^2}
\frac{\mu^t \mathbf{A}_2 \mu}{2\sigma^2} = \frac{(\mu_1 - \mu_2)^2}{4\sigma^2}
\frac{\mu^t \mathbf{A}_3 \mu}{2\sigma^2} = \frac{(\mu_1 + \mu_2 - 2\mu_3)^2}{12\sigma^2},$$

we have

$$\mathbf{Y}^{T}\mathbf{A}_{1}\mathbf{Y} \sim \sigma^{2}\chi_{1}^{2}\left(\frac{\left(\sum_{i=1}^{3}\mu_{i}\right)^{2}}{6\sigma^{2}}\right)$$

$$\mathbf{Y}^{T}\mathbf{A}_{2}\mathbf{Y} \sim \sigma^{2}\chi_{1}^{2}\left(\frac{(\mu_{1}-\mu_{2})^{2}}{4\sigma^{2}}\right)$$

$$\mathbf{Y}^{T}\mathbf{A}_{3}\mathbf{Y} \sim \sigma^{2}\chi_{1}^{2}\left(\frac{(\mu_{1}+\mu_{2}-2\mu_{3})^{2}}{12\sigma^{2}}\right)$$

(b) It is easy to see that

$$\mathbf{A}_1 \sigma^2 \mathbf{I} \mathbf{A}_2^T = 0, \quad \mathbf{A}_2 \sigma^2 \mathbf{I} \mathbf{A}_3^T = 0, \quad \mathbf{A}_3 \sigma^2 \mathbf{I} \mathbf{A}_1^T = 0$$

Then by Theorem 2.5 of Seber & Lee, $\mathbf{A}_i \mathbf{Y}$ and $\mathbf{A}_j \mathbf{Y}, i \neq j, i, j = 1, 2, 3$ are independent. This implies that $(\mathbf{A}_i \mathbf{Y})^T (\mathbf{A}_i \mathbf{Y})$ and $(\mathbf{A}_j \mathbf{Y})^T (\mathbf{A}_j \mathbf{Y}), i \neq j, i, j = 1, 2, 3$ are independent but

$$(\mathbf{A}_{i}\mathbf{Y})^{T}(\mathbf{A}_{i}\mathbf{Y}) = \mathbf{Y}^{T}\mathbf{A}_{i}^{T}\mathbf{A}_{i}\mathbf{Y}$$

$$= \mathbf{Y}^{T}\mathbf{A}_{i}\mathbf{A}_{i}\mathbf{Y}$$

$$= \mathbf{Y}^{T}\mathbf{A}_{i}\mathbf{Y}$$

$$= Q_{i}.$$

Thus the Q_i are pairwise independent.

Problem 2

Recall our definition of $\hat{\beta}$: $\hat{\mathbf{Y}}$ is the projection of \mathbf{Y} onto the column space of \mathbf{X} and $\hat{\beta}$ is a vector such that $\hat{\mathbf{Y}} = \mathbf{X}\hat{\beta}$. Show that if \mathbf{X} has a full rank, then

$$(\mathbf{Y} - \mathbf{X}\beta)^T (\mathbf{Y} - \mathbf{X}\beta) = (\mathbf{Y} - \mathbf{X}\hat{\beta})^T (\mathbf{Y} - \mathbf{X}\hat{\beta}) + (\hat{\beta} - \beta)^T \mathbf{X}^T \mathbf{X} (\hat{\beta} - \beta).$$

and hence deduce that the left side is minimized when $\beta = \hat{\beta}$.

Solution: Because

$$\mathbf{X}^T(\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}) = 0,$$

we have

$$\begin{aligned} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) &= & (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}} + \mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}} + \mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{X}\boldsymbol{\beta}) \\ &= & ((\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}) + \mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}))^T ((\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}) + \mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})) \\ &= & (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})^T (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}) + (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})^T \mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \\ &+ (\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}))^T (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}) + (\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}))^T (\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})) \\ &= & (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})^T (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}) + (\mathbf{X}^T (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}))^T (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \\ &+ (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}))^T \mathbf{X}^T (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}) + (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}))^T \mathbf{X}^T (\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})) \\ &= & (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})^T (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}) + (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}))^T \mathbf{X}^T \mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})). \end{aligned}$$

We can write

$$(\mathbf{Y} - \mathbf{X}\beta)^{T}(\mathbf{Y} - \mathbf{X}\beta) = (\mathbf{Y} - \mathbf{X}\hat{\beta})^{T}(\mathbf{Y} - \mathbf{X}\hat{\beta}) + (\hat{\beta} - \beta)^{T}\mathbf{X}^{T}\mathbf{X}(\hat{\beta} - \beta)$$
$$= \|\mathbf{Y} - \mathbf{X}\hat{\beta}\|^{2} + \|\mathbf{X}(\hat{\beta} - \beta)\|^{2}.$$

Note that $\|\mathbf{Y} - \mathbf{X}\hat{\beta}\|^2$ does not depend on β and that $\|\mathbf{X}(\hat{\beta} - \beta)\|^2 \ge 0$. Because $\|\mathbf{X}(\hat{\beta} - \beta)\|^2 = 0$ when $\beta = \hat{\beta}$, the claim follows.

Problem 3

Suppose that $\hat{\beta}_1 \neq \hat{\beta}_2$ are two different least squares estimate of β . Show that there are infinitely many least squares estimate of β .

Solution: Let $c \in (0,1)$. Then $c\hat{\beta}_1 + (1-c)\hat{\beta}_2$ is also a least squares estimate of β different from $\hat{\beta}_1$ and $\hat{\beta}_2$ because this quantity satisfies the normal equation:

$$\mathbf{X}^{T}(\mathbf{Y} - \mathbf{X}(c\hat{\beta}_{1} + (1 - c)\hat{\beta}_{2}) = \mathbf{X}^{T}\mathbf{Y} - \mathbf{X}^{T}\mathbf{X}c\hat{\beta}_{1} + \mathbf{X}^{T}\mathbf{X}(1 - c)\hat{\beta}_{2}$$

$$= (c + 1 - c)\mathbf{X}^{T}\mathbf{Y} - c\mathbf{X}^{T}\mathbf{X}\hat{\beta}_{1} + (1 - c)\mathbf{X}^{T}\mathbf{X}\hat{\beta}_{2}$$

$$= c(\mathbf{X}^{T}\mathbf{Y} - \mathbf{X}^{T}\mathbf{X}\hat{\beta}_{1}) + (1 - c)(\mathbf{X}^{T}\mathbf{Y} - \mathbf{X}^{T}\mathbf{X}\hat{\beta}_{2})$$

$$= 0.$$

Since the choice of c is infinitely many, the claim follows.

Problem 4

Let **P** be the projection operator onto $\mathcal{R}(\mathbf{X})$. For least squares estimation, recall that $\hat{\epsilon} = (\mathbf{I} - \mathbf{P})\mathbf{Y}$. Derive

- (a) $E[\hat{\epsilon}]$
- (b) $cov(\hat{\epsilon})$
- (c) $cov(\hat{\epsilon}, \mathbf{PY})$
- (d) E[RSS].

Solution: Note that $(\mathbf{I} - \mathbf{P})\mathbf{P} = 0$ and that $(\mathbf{I} - \mathbf{P})\mathbf{X} = 0$.

(a) We have

$$E[\hat{\epsilon}] = E[(\mathbf{I} - \mathbf{P})\mathbf{Y}]$$

$$= (\mathbf{I} - \mathbf{P})E[\mathbf{Y}]$$

$$= (\mathbf{I} - \mathbf{P})E[\mathbf{X}\beta + \epsilon]$$

$$= (\mathbf{I} - \mathbf{P})\mathbf{X}\beta$$

$$= 0.$$

(b) Noting that $\mathbf{I} - \mathbf{P}$ is idempotent, we have

$$\begin{aligned} \cos(\hat{\epsilon}) &= & \cos((\mathbf{I} - \mathbf{P})\mathbf{Y}) \\ &= & (\mathbf{I} - \mathbf{P})\cos(\mathbf{Y})(\mathbf{I} - \mathbf{P})^T \\ &= & (\mathbf{I} - \mathbf{P})\sigma^2\mathbf{I})(\mathbf{I} - \mathbf{P}) \\ &= & \sigma^2(\mathbf{I} - \mathbf{P})(\mathbf{I} - \mathbf{P}) \\ &= & \sigma^2(\mathbf{I} - \mathbf{P}). \end{aligned}$$

(c) We have

$$\begin{aligned} \cos(\hat{\epsilon}, \mathbf{PY}) &= & \cos((\mathbf{I} - \mathbf{P})\mathbf{Y}, \mathbf{PY}) \\ &= & (\mathbf{I} - \mathbf{P})\cos(\mathbf{Y}, \mathbf{Y})\mathbf{P}^T \\ &= & (\mathbf{I} - \mathbf{P})\sigma^2\mathbf{IP} \\ &= & \sigma^2(\mathbf{I} - \mathbf{P})\mathbf{P} \\ &= & 0. \end{aligned}$$

(d) Let $\mathbf{Y} \in \mathbb{R}^n$ and $rank(\mathbf{P}) = p$. Then $rank(\mathbf{I} - \mathbf{P}) = n - p$ and furthermore $tr(\mathbf{I} - \mathbf{P}) = n - p$. Thus, we have

$$\begin{split} E[RSS] &= E[\hat{\epsilon}^T \hat{\epsilon}] \\ &= E[(\mathbf{I} - \mathbf{P})\mathbf{Y})^T (\mathbf{I} - \mathbf{P})\mathbf{Y})] \\ &= E[\mathbf{Y}^T (\mathbf{I} - \mathbf{P})(\mathbf{I} - \mathbf{P})\mathbf{Y})] \\ &= E[\mathbf{Y}^T (\mathbf{I} - \mathbf{P})\mathbf{Y})] \\ &= E[\mathbf{Y}^T (\mathbf{I} - \mathbf{P})\mathbf{Y})] \\ &= tr((\mathbf{I} - \mathbf{P})\sigma^2\mathbf{I}) + E[\mathbf{Y}]^T (\mathbf{I} - \mathbf{P})E[\mathbf{Y}] \\ &= \sigma^2 tr((\mathbf{I} - \mathbf{P})) + (\mathbf{X}\beta)^T (\mathbf{I} - \mathbf{P})(\mathbf{X}\beta) \\ &= \sigma^2 (n - p). \end{split}$$