Biost/Stat 533 Spring 2008

Homework #3

Problem 1

Let $\mathbf{Y} \sim N(\mu, \sigma^2 \mathbf{I})$. Define matrices $\mathbf{A}_1 = \frac{1}{3} \mathbf{J}_3 \mathbf{J}_3^T$, $\mathbf{A}_2 = \frac{1}{2}$ $\sqrt{ }$ $\overline{1}$ 1 −1 0 −1 1 0 0 0 0 1 $\Big\vert$, and $\mathbf{A}_3 == \frac{1}{6}$ $\sqrt{ }$ $\overline{1}$ $1 \t -2$ $1 \t -2$ -2 -2 4 1 $\vert \cdot$ Define $Q_i = \mathbf{Y}^T \mathbf{A}_i \mathbf{Y}$.

(a) Find distributions of Q_1, Q_2, Q_3 .

(b) Prove or disprove: the \mathcal{Q}_i are pairwise independent.

Solution: (a) Let $\mu = (\mu_1, \mu_2, \mu_3)^T$. It is easy to check that A_i satisfy that

$$
A_i^T = A_i,
$$

\n
$$
A_i^2 = A_i,
$$

\n
$$
rank[A_i] = 1.
$$

Thus we can apply Theorem in page 6 of Lecture 6 to obtain

$$
\frac{\mathbf{Y}^T \mathbf{A}_i \mathbf{Y}}{\sigma^2} \sim \chi_1^2 \left(\frac{\mu^t \mathbf{A}_i \mu}{2\sigma^2} \right).
$$

Because

$$
\frac{\mu^t \mathbf{A}_1 \mu}{2\sigma^2} = \frac{(\sum_{i=1}^3 \mu_i)^2}{6\sigma^2} \n\frac{\mu^t \mathbf{A}_2 \mu}{2\sigma^2} = \frac{(\mu_1 - \mu_2)^2}{4\sigma^2} \n\frac{\mu^t \mathbf{A}_3 \mu}{2\sigma^2} = \frac{(\mu_1 + \mu_2 - 2\mu_3)^2}{12\sigma^2},
$$

we have

$$
\mathbf{Y}^T \mathbf{A}_1 \mathbf{Y} \sim \sigma^2 \chi_1^2 \left(\frac{(\sum_{i=1}^3 \mu_i)^2}{6\sigma^2} \right)
$$

$$
\mathbf{Y}^T \mathbf{A}_2 \mathbf{Y} \sim \sigma^2 \chi_1^2 \left(\frac{(\mu_1 - \mu_2)^2}{4\sigma^2} \right)
$$

$$
\mathbf{Y}^T \mathbf{A}_3 \mathbf{Y} \sim \sigma^2 \chi_1^2 \left(\frac{(\mu_1 + \mu_2 - 2\mu_3)^2}{12\sigma^2} \right)
$$

(b) It is easy to see that

$$
\mathbf{A}_1 \sigma^2 \mathbf{I} \mathbf{A}_2^T = 0, \quad \mathbf{A}_2 \sigma^2 \mathbf{I} \mathbf{A}_3^T = 0, \quad \mathbf{A}_3 \sigma^2 \mathbf{I} \mathbf{A}_1^T = 0
$$

Then by Theorem 2.5 of Seber & Lee, $\mathbf{A}_i \mathbf{Y}$ and $\mathbf{A}_j \mathbf{Y}$, $i \neq j$, $i, j = 1, 2, 3$ are independent. This implies that $(\mathbf{A}_i \mathbf{Y})^T (\mathbf{A}_i \mathbf{Y})$ and $(\mathbf{A}_j \mathbf{Y})^T (\mathbf{A}_j \mathbf{Y}), i \neq j, i, j = 1, 2, 3$ are independent but

$$
(\mathbf{A}_i \mathbf{Y})^T (\mathbf{A}_i \mathbf{Y}) = \mathbf{Y}^T \mathbf{A}_i^T \mathbf{A}_i \mathbf{Y}
$$

= $\mathbf{Y}^T \mathbf{A}_i \mathbf{A}_i \mathbf{Y}$
= $\mathbf{Y}^T \mathbf{A}_i \mathbf{Y}$
= Q_i .

Thus the Q_i are pairwise independent.

Problem 2

Recall our definition of $\hat{\beta}$: $\hat{\mathbf{Y}}$ is the projection of Y onto the column space of X and $\hat{\beta}$ is a vector such that $\hat{\mathbf{Y}} = \mathbf{X}\hat{\beta}$. Show that if **X** has a full rank, then

$$
(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) = (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})^T (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}) + (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})^T \mathbf{X}^T \mathbf{X} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}).
$$

and hence deduce that the left side is minimized when $\beta = \hat{\beta}$.

Solution: Because

$$
\mathbf{X}^T(\mathbf{Y}-\mathbf{X}\hat{\beta})=0,
$$

we have

$$
(\mathbf{Y} - \mathbf{X}\beta)^{T}(\mathbf{Y} - \mathbf{X}\beta) = (\mathbf{Y} - \mathbf{X}\hat{\beta} + \mathbf{X}\hat{\beta} - \mathbf{X}\beta)^{T}(\mathbf{Y} - \mathbf{X}\hat{\beta} + \mathbf{X}\hat{\beta} - \mathbf{X}\beta)
$$

\n
$$
= ((\mathbf{Y} - \mathbf{X}\hat{\beta}) + \mathbf{X}(\hat{\beta} - \beta))^{T}((\mathbf{Y} - \mathbf{X}\hat{\beta}) + \mathbf{X}(\hat{\beta} - \beta))
$$

\n
$$
= (\mathbf{Y} - \mathbf{X}\hat{\beta})^{T}(\mathbf{Y} - \mathbf{X}\hat{\beta}) + (\mathbf{Y} - \mathbf{X}\hat{\beta})^{T}\mathbf{X}(\hat{\beta} - \beta)
$$

\n
$$
+ (\mathbf{X}(\hat{\beta} - \beta))^{T}(\mathbf{Y} - \mathbf{X}\hat{\beta}) + (\mathbf{X}(\hat{\beta} - \beta))^{T}(\mathbf{X}(\hat{\beta} - \beta))
$$

\n
$$
= (\mathbf{Y} - \mathbf{X}\hat{\beta})^{T}(\mathbf{Y} - \mathbf{X}\hat{\beta}) + (\mathbf{X}^{T}(\mathbf{Y} - \mathbf{X}\hat{\beta}))^{T}(\hat{\beta} - \beta)
$$

\n
$$
+ (\hat{\beta} - \beta))^{T}\mathbf{X}^{T}(\mathbf{Y} - \mathbf{X}\hat{\beta}) + (\hat{\beta} - \beta))^{T}\mathbf{X}^{T}(\mathbf{X}(\hat{\beta} - \beta))
$$

\n
$$
= (\mathbf{Y} - \mathbf{X}\hat{\beta})^{T}(\mathbf{Y} - \mathbf{X}\hat{\beta}) + (\hat{\beta} - \beta))^{T}\mathbf{X}^{T}\mathbf{X}(\hat{\beta} - \beta).
$$

We can write

$$
(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) = (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})^T (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}) + (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})^T \mathbf{X}^T \mathbf{X} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})
$$

=
$$
\|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|^2 + \|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})\|^2.
$$

Note that $||\mathbf{Y} - \mathbf{X}\hat{\beta}||^2$ does not depend on β and that $||\mathbf{X}(\hat{\beta} - \beta)||^2 \ge 0$. Because $||\mathbf{X}(\hat{\beta} - \beta)||^2 = 0$ when $\beta = \hat{\beta}$, the claim follows.

Problem 3

Suppose that $\hat{\beta}_1 \neq \hat{\beta}_2$ are two different least squares estimate of β . Show that there are infinitely many least squares estimate of β .

Solution: Let $c \in (0,1)$. Then $c\hat{\beta}_1 + (1-c)\hat{\beta}_2$ is also a least squares estimate of β different from $\hat{\beta}_1$ and $\hat{\beta}_2$ because this quantity satisfies the normal equation:

$$
\mathbf{X}^T (\mathbf{Y} - \mathbf{X} (c\hat{\beta}_1 + (1 - c)\hat{\beta}_2) = \mathbf{X}^T \mathbf{Y} - \mathbf{X}^T \mathbf{X} c\hat{\beta}_1 + \mathbf{X}^T \mathbf{X} (1 - c)\hat{\beta}_2
$$

\n
$$
= (c + 1 - c)\mathbf{X}^T \mathbf{Y} - c\mathbf{X}^T \mathbf{X} \hat{\beta}_1 + (1 - c)\mathbf{X}^T \mathbf{X} \hat{\beta}_2
$$

\n
$$
= c(\mathbf{X}^T \mathbf{Y} - \mathbf{X}^T \mathbf{X} \hat{\beta}_1) + (1 - c)(\mathbf{X}^T \mathbf{Y} - \mathbf{X}^T \mathbf{X} \hat{\beta}_2)
$$

\n
$$
= 0.
$$

Since the choice of c is infinitely many, the claim follows.

Problem 4

Let P be the projection operator onto $\mathcal{R}(\mathbf{X})$. For least squares estimation, recall that $\hat{\epsilon} = (\mathbf{I} - \mathbf{P})\mathbf{Y}$. Derive (a) $E[\hat{\epsilon}]$

- (b) $cov(\hat{\epsilon})$
- (c) cov $(\hat{\epsilon}, \mathbf{PY})$
- (d) $E[RSS]$.

Solution: Note that $(I - P)P = 0$ and that $(I - P)X = 0$. (a) We have

$$
E[\hat{\epsilon}] = E[(\mathbf{I} - \mathbf{P})\mathbf{Y}]
$$

= (\mathbf{I} - \mathbf{P})E[\mathbf{Y}]
= (\mathbf{I} - \mathbf{P})E[\mathbf{X}\beta + \epsilon]
= (\mathbf{I} - \mathbf{P})\mathbf{X}\beta
= 0.

(b) Noting that $\mathbf{I} - \mathbf{P}$ is idempotent, we have

$$
cov(\hat{\epsilon}) = cov((\mathbf{I} - \mathbf{P})\mathbf{Y})
$$

= (\mathbf{I} - \mathbf{P})cov(\mathbf{Y})(\mathbf{I} - \mathbf{P})^T
= (\mathbf{I} - \mathbf{P})\sigma^2\mathbf{I})(\mathbf{I} - \mathbf{P})
= \sigma^2(\mathbf{I} - \mathbf{P})(\mathbf{I} - \mathbf{P})
= \sigma^2(\mathbf{I} - \mathbf{P}).

(c) We have

$$
cov(\hat{\epsilon}, \mathbf{PY}) = cov((\mathbf{I} - \mathbf{P})\mathbf{Y}, \mathbf{PY})
$$

= (\mathbf{I} - \mathbf{P})cov(\mathbf{Y}, \mathbf{Y})\mathbf{P}^T
= (\mathbf{I} - \mathbf{P})\sigma^2 \mathbf{IP}
= \sigma^2 (\mathbf{I} - \mathbf{P})\mathbf{P}
= 0.

(d) Let $\mathbf{Y} \in \mathbb{R}^n$ and $rank(\mathbf{P}) = p$. Then $rank(\mathbf{I} - \mathbf{P}) = n - p$ and furthermore $tr(\mathbf{I} - \mathbf{P}) = n - p$. Thus, we have

$$
E[RSS] = E[\hat{\epsilon}^T \hat{\epsilon}]
$$

\n
$$
= E[(\mathbf{I} - \mathbf{P})\mathbf{Y})^T (\mathbf{I} - \mathbf{P})\mathbf{Y})]
$$

\n
$$
= E[\mathbf{Y}^T (\mathbf{I} - \mathbf{P})(\mathbf{I} - \mathbf{P})\mathbf{Y})]
$$

\n
$$
= E[\mathbf{Y}^T (\mathbf{I} - \mathbf{P})\mathbf{Y})]
$$

\n
$$
= tr((\mathbf{I} - \mathbf{P})\sigma^2 \mathbf{I}) + E[\mathbf{Y}]^T (\mathbf{I} - \mathbf{P})E[\mathbf{Y}]
$$

\n
$$
= \sigma^2 tr((\mathbf{I} - \mathbf{P})) + (\mathbf{X}\beta)^T (\mathbf{I} - \mathbf{P})(\mathbf{X}\beta)
$$

\n
$$
= \sigma^2 (n - p).
$$