Homework #6

Problem 1

Let Y_1, Y_2, \ldots, Y_n be random variables with common mean θ and dispersion matrix $\sigma^2 \mathbf{V}$ with $v_{ii} = 1$ and off-diagonal entries $v_{ij} = \rho$. Find the generalized least squares estimate of θ and show that it is the same as the ordinary least squares estimate.

Solution: The linear model is

$$oldsymbol{Y} = oldsymbol{1}_n heta + oldsymbol{\epsilon}$$

where $\mathbf{Y} = (Y_1, Y_2, \dots, Y_n)^T$, $\mathbf{1}_n \in \mathbb{R}^n$ is the vector whose elements are all 1, and $\boldsymbol{\epsilon} \in \mathbb{R}^n$ satisfies $E[\boldsymbol{\epsilon}] = \mathbf{0}$ and $\operatorname{Var}(\boldsymbol{\epsilon}) = \sigma^2 \mathbf{V}$. First, we compute \mathbf{V}^{-1} . To this end, we use the following fact (check this);

$$(A + ab^T)^{-1} = A^{-1} - \frac{(A^{-1}a)(b^T A^{-1})}{1 + b^T A^{-1}a}$$

where \boldsymbol{A} is a square matrix and \boldsymbol{a} and \boldsymbol{b} are vectors with the same dimension as the number of columns of \boldsymbol{A} and $1 + \boldsymbol{b}^T \boldsymbol{A}^{-1} \boldsymbol{a} \neq 0$. Applying this fact to $\boldsymbol{V} = (1 - \rho) \boldsymbol{I}_n + \rho \boldsymbol{1}_n \boldsymbol{1}_n^T$, we have (check this)

$$\boldsymbol{V}^{-1} = \frac{1}{1-\rho} \left(\boldsymbol{I}_n - \frac{\rho}{1+(n-1)\rho} \boldsymbol{1}_n \boldsymbol{1}_n^T \right)$$

assuming that $1 + (n-1)\rho \neq 0$. The generalized least squares estimate θ^* of θ is given by

$$\begin{aligned} \theta^* &= (\mathbf{1}_n^T \mathbf{V}^{-1} \mathbf{1}_n)^{-1} \mathbf{1}_n^T \mathbf{V}^{-1} \mathbf{Y} \\ &= \left(\mathbf{1}_n^T \frac{1}{1-\rho} \left(\mathbf{I}_n - \frac{\rho}{1+(n-1)\rho} \mathbf{1}_n \mathbf{1}_n^T \right) \mathbf{1}_n \right)^{-1} \mathbf{1}_n^T \frac{1}{1-\rho} \left(\mathbf{I}_n - \frac{\rho}{1+(n-1)\rho} \mathbf{1}_n \mathbf{1}_n^T \right) \mathbf{Y} \\ &= (1-\rho) \left(\left(\mathbf{1}_n^T - \frac{n\rho}{1+(n-1)\rho} \mathbf{1}_n^T \right) \mathbf{1}_n \right)^{-1} \frac{1}{1-\rho} \left(\mathbf{1}_n^T - \frac{n\rho}{1+(n-1)\rho} \mathbf{1}_n^T \right) \mathbf{Y} \\ &= \left(\left(\left(1 - \frac{n\rho}{1+(n-1)\rho} \right) \mathbf{1}_n^T \mathbf{1}_n \right)^{-1} \left(\left(1 - \frac{n\rho}{1+(n-1)\rho} \right) \mathbf{1}_n^T \right) \mathbf{Y} \\ &= \frac{1}{n} \mathbf{1}_n^T \mathbf{Y} \end{aligned}$$

This is the same as the ordinary least squares estimate of θ obtained in Problem 1 (a) of Homework 4.

Another Solution: Because $V\mathbf{1}_n = (1 + (n-1)\rho)\mathbf{1}_n$, it is clear that $\mathcal{R}(V\mathbf{1}_n) = \mathcal{R}(\mathbf{1}_n)$. Then we can apply the Corollay in the page 8 of the Lecture note 12 to conclude the claim.

Problem 2

Let $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ where $\boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{V})$, \mathbf{X} is $n \times p$ of rank p and \mathbf{V} is a known positive definite $n \times n$ matrix. Let $\boldsymbol{\beta}^*$ be the GLS estimate of $\boldsymbol{\beta}$. Prove that

- (a) $Q = ((\boldsymbol{Y} \boldsymbol{X}\boldsymbol{\beta}^*)^T \boldsymbol{V}^{-1} (\boldsymbol{Y} \boldsymbol{X}\boldsymbol{\beta}^*) / \sigma^2 \sim \chi^2_{n-p}.$
- (b) Find an unbiased estimate of σ^2 .

(c) Define $Y^* = X\beta^*$. If $Y^* = P^*Y$, what is P^* ? Show that P^* is idempotent but not in general symmetric.

Solution: (a) Because V is positive definite, there exists an invertible matrix $K \in \mathbb{R}^{n \times n}$ such that $V = KK^{T}$. Thus, let

$$egin{aligned} oldsymbol{Z} &\equiv oldsymbol{K}^{-1}oldsymbol{Y} \ oldsymbol{B} &\equiv oldsymbol{K}^{-1}oldsymbol{X} \ oldsymbol{\eta} &\equiv oldsymbol{K}^{-1}oldsymbol{\epsilon} \end{aligned}$$

and consider the linear model

$$Z = B\beta + \eta$$
.

Note that \boldsymbol{B} is of full rank because

$$p = \operatorname{rank}(\mathbf{X}) = \operatorname{rank}(\mathbf{K}\mathbf{K}^{-1}\mathbf{X}) \le \operatorname{rank}(\mathbf{K}^{-1}\mathbf{X}) (= \operatorname{rank}(\mathbf{B})) \le \operatorname{rank}(\mathbf{X}) = p$$

and that

$$E[\boldsymbol{\eta}] = 0$$
 and $Var(\boldsymbol{\eta}) = \sigma^2 \boldsymbol{I}$.

The generalized least squares estimate β^* of β is the ordinary least squares estimate of β in this model and is given by

$$\beta^* = (B^T B)^{-1} B^T Z = (X^T V^{-1} X)^{-1} X^T V^{-1} Y.$$

Applying the Theorem in the page 6 of the Lecture note 8, we have

$$RSS/\sigma^2 \sim \chi^2_{n-p}$$

but

$$RSS = (Z - \hat{Z})^{T} (Z - \hat{Z})$$

= $(Z - B\hat{\beta})^{T} (Z - B\hat{\beta})$
= $(K^{-1}Y - K^{-1}X(B^{T}B)^{-1}B^{T}Z)^{T}(K^{-1}Y - K^{-1}X(B^{T}B)^{-1}B^{T}Z)$
= $(Y - X(B^{T}B)^{-1}B^{T}Z)^{T}(K^{-1})^{T}K^{-1}(Y - X(B^{T}B)^{-1}B^{T}Z)$
= $(Y - X\beta^{*})^{T}V^{-1}(Y - X\beta^{*}).$

Thus the claim that $Q \sim \chi^2_{n-p}$ follows.

(b) From part(a), $(\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}^*)^T \boldsymbol{V}^{-1} (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}^*) / (n-p)$ is an unbiased estimate of σ^2 because

$$E[(\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}^*)^T \boldsymbol{V}^{-1} (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}^*) / (n-p)] = \frac{\sigma^2}{n-p} E[Q] = \frac{\sigma^2}{n-p} E[\chi_{n-p}^2] = \sigma^2.$$

(c) As discussed in part(a), we have

$$Y^* = X \beta^* = X (X^T V^{-1} X)^{-1} X^T V^{-1} Y$$

so that

$$\boldsymbol{P}^* = \boldsymbol{X} (\boldsymbol{X}^T \boldsymbol{V}^{-1} \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{V}^{-1}.$$

 P^* is idempotent because

$$P^*P^* = X(X^TV^{-1}X)^{-1}X^TV^{-1}X(X^TV^{-1}X)^{-1}X^TV^{-1}$$

= $X(X^TV^{-1}X)^{-1}(X^TV^{-1}X)(X^TV^{-1}X)^{-1}X^TV^{-1}$
= $X(X^TV^{-1}X)^{-1}X^TV^{-1}$
= $P^*.$

Also, it can be shown that in general P^* is not symmetric by providing some counterexample (for example, $X = (1, 2)^T$, V = diag(1, 1/2)). Note that computing the transpose is not enough for proof.

Problem 3

If \boldsymbol{X} is not of full rank, show that any solution $\boldsymbol{\beta}$ of

$$\boldsymbol{X}^T \boldsymbol{V}^{-1} \boldsymbol{X} \boldsymbol{\beta} = \boldsymbol{X}^T \boldsymbol{V}^{-1} \boldsymbol{Y}$$

minimizes $(\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})^T \boldsymbol{V}^{-1} (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}).$

Solution: Note that V in this question is assumed to be positive definite. Let $\hat{\beta}$ be an arbitrary solution of $X^T V^{-1} X \beta = X^T V^{-1} Y$. Then we have $X^T V^{-1} (Y - X \hat{\beta}) = 0$. Using this fact, we have

$$\begin{aligned} (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})^T \boldsymbol{V}^{-1} (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}) &= (\boldsymbol{Y} - \boldsymbol{X}\hat{\boldsymbol{\beta}} + X(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}))^T \boldsymbol{V}^{-1} (\boldsymbol{Y} - \boldsymbol{X}\hat{\boldsymbol{\beta}} + X(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})) \\ &= (\boldsymbol{Y} - \boldsymbol{X}\hat{\boldsymbol{\beta}})^T \boldsymbol{V}^{-1} (\boldsymbol{Y} - \boldsymbol{X}\hat{\boldsymbol{\beta}}) + (\boldsymbol{Y} - \boldsymbol{X}\hat{\boldsymbol{\beta}})^T \boldsymbol{V}^{-1} \boldsymbol{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \\ &+ (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \boldsymbol{X}^T \boldsymbol{V}^{-1} (\boldsymbol{Y} - \boldsymbol{X}\hat{\boldsymbol{\beta}}) + (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \boldsymbol{X}^T \boldsymbol{V}^{-1} \boldsymbol{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \\ &= (\boldsymbol{Y} - \boldsymbol{X}\hat{\boldsymbol{\beta}})^T \boldsymbol{V}^{-1} (\boldsymbol{Y} - \boldsymbol{X}\hat{\boldsymbol{\beta}}) + 0 + 0 + (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \boldsymbol{X}^T \boldsymbol{V}^{-1} \boldsymbol{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \\ &= (\boldsymbol{Y} - \boldsymbol{X}\hat{\boldsymbol{\beta}})^T \boldsymbol{V}^{-1} (\boldsymbol{Y} - \boldsymbol{X}\hat{\boldsymbol{\beta}}) + (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \boldsymbol{X}^T \boldsymbol{V}^{-1} \boldsymbol{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}). \end{aligned}$$

Now, note that the first term does not depend on β and that the second term is nonnegative because $X^T V^{-1} X$ is nonnegative definite (Why?). Since $\beta = \hat{\beta}$ sets the second term to zero, the claim follows.