
Biost/Stat 533
Spring 2008

Homework Assignment #9
KEY

1. A manufacturer of locknuts found unwanted differences in the torque values of its prod-
uct. (Torqe is the work (force × distance) required to tighten the nut.) The manufacturer did
an experiment to study two factors that might affect torque values. The first factor was the type
of manufacturing process. The second factor was the medium onto which the locknut would be
threaded (a bolt or a mandrel). The following table gives the experimental data.

Manufacturing Process
A B C

bolt 20,16,17,18,15, 26,40,28,38,38, 25,40,30,17,16,
16,19,14,15,24 30,26,38,45,38 45,49,33,30,20

mandrel 24,18,17,17,15, 32,22,30,35,32, 10,13,17,16,15,
23,14,18,12,11 28,27,28,30,30 14,11,14,15,16

(a) Give the ANOVA table for the two-way ANOVA model with interactions.
(b) Is there an interaction between these two factors for torque value?
(c) Regardless of your answer to (b), give the ANOVA table for the two-way ANOVA
model without interactions.
(d) Descriptively, does manufacturing process or medium appear to be
the more important factor? (Hint:
consider the mean square.)

Solution: Table 1 shows the ANOVA table for the two-way model with interactions.

Df Sum Sq Mean Sq F value Pr(>F)
type 1 821.40 821.40 12.78 0.0007
process 2 1054.23 527.12 8.20 0.0008
type× process 2 406.90 203.45 3.17 0.0501
Residuals 54 3469.80 64.26

Table 1: Problem 1 (a)

(b) At the 5% level, we would fail to reject the null hypothesis of no interaction effect.

(c) Table 2 shows the ANOVA table for the two-way model without interactions.
(d) Descriptively, it appears that more of the variation in the outcome is due to the type of bolt

rather than the process because MS(type) > MS(process).

2. In class we did an example about orthogonal contrasts in
one-way ANOVA. The same ideas can be used with continuous variables. Suppose
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Df Sum Sq Mean Sq F value Pr(>F)
type 1 821.40 821.40 11.87 0.0011
process 2 1054.23 527.12 7.61 0.0012
Residuals 56 3876.70 69.23

Table 2: Problem 1 (c)

we model E[Y ] as a function of x using data from a planned experiment where x takes on exactly
3 values. The data matrix is

x y
40 25.66
50 29.15
60 35.73
40 28.00
50 35.09
60 39.56
40 20.65
50 29.79
60 35.66

Consider the following design matrix for a linear model
with parameters β0, L and Q. (The rows
correspond to the same order of the data as in the data
table above.)

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1
1 0 −2
1 1 1
1 −1 1
1 0 −2
1 1 1
1 −1 1
1 0 −2
1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(a) Interpret the parameters β0, L and Q.

(b) A common practice would be to use the same design matrix but
to divide the second column by

√
2 and divide the third column

by
√

6 . What is the purpose of doing this?

(c) Find the least-squares estimates of β0, L and Q using
the re-scaled design matrix described in (b).

(d) Here is a different model: E[y] = β0 + β1X + β2x
2.

Consider the relationship between the two models. What is an advantage of using
the first model compared to using E[y] = β0 + β1X + β2x

2?

2



Solution: (a) We can rewrite the model as

E[Y |X = x] =

⎧⎨
⎩

β0 − L + Q if x = 40
β0 − 2Q if x = 50
β0 + L + Q if x = 60

Then β0 can be interpreted as the the overall mean, since 1
3 {E[Y |X = 40] + E[Y |X = 50] + E[Y |X = 60]} =

β0. L can be interpreted as
the linear effect, since it is a contrast between the groups with X = 60 and X = 40. Note that

(E[Y |X = 40] − E[Y |X = 50]) − (E[Y |X = 50] − E[Y |X = 60]) ∝ Q. So Q can be interpreted as
the difference in the linear trends between groups 1 and 2 and groups 2 and 3. That is, Q can be
interpreted as the quadratic trend in the response as a function of x.

(b) The purpose of scaling the design matrix is so that the parameter estimates have equal vari-
ances. That way, the size of the estimates can be compared.

(c) Table 3 shows the resulting estimates.

β̂0 L̂ Q̂
est. 31.03 6.11 −0.156

Table 3: Problem 2 (c)

(d) Both models can measure a linear and quadrataic trend in the response.
But in the model with L and Q the linear and quadratic effect estimates
are uncorrelated.

3. Suppose an experiment is done to compare two varieties of tomatoes in plots that can hold two
plants each. There are two such plots available for the study, so that the experimental design is

1 2
1 2

(plants will be randomized within a plot).

The statistical model is yij = µ + Pi + Vj + εij for i = 1, 2 plots and j = 1, 2 varieties. Assume the
errors ε are uncorrelated and have variance σ2.

For (a) and (c) use the data vector Y written in the order

y11

y12

y21

y22

(a) What is cov(Y) when the “plot effects” Pi are considered fixed effects?
(b) What is the formula for the best linear unbiased estimator of V̂1 − V̂2 in terms of the Yij when
the Pi are considered fixed effects?
(c) What is cov(Y) when the “plot effects” Pi are considered random effects with variance τ2?
(d) What is the formula for the best linear unbiased estimator of V̂1 − V̂2 in terms of the Yij when
the Pi are considered random effects with variance τ2? Treat σ2 and τ2 as known.

Solution:
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(a) cov(Y) = σ2I

(b) We set up a design matrix X for the parameters µ, P1, P2, V1, V2. However, the matrix will not
have full column rank, so we need to use a technique to fit models that don’t have full rank. One
option is to use constraints P1 + P2 = V1 + V2 = 0. If we construct X for the parameters µ, P1, V1

using this constraint, we get

X =

⎛
⎜⎜⎝

1 1 1
1 1 −1
1 −1 1
1 −1 −1

⎞
⎟⎟⎠. We find that (X′X)−1X′ =

⎛
⎝

1
4

1
4

1
4

1
4

1
4

1
4 −1

4 −1
4

1
4 −1

4
1
4 −1

4

⎞
⎠. Calculating

(X′X)−1X′Y, we get that V̂1 = 1
4(y11 − y12 + y21 − y22). Since V̂1 − V̂2 = 2V̂1 for the chosen linear

constraint, we get V̂1 − V̂2 = 1
2(y11 − y12 + y21 − y22) = ȳ·1 − ȳ·2.

(c) cov(Y) =

⎛
⎜⎜⎝

σ2 + τ2 τ2 0 0
τ2 σ2 + τ2

0 0 σ2 + τ2 τ2

0 0 τ2 σ2 + τ2

⎞
⎟⎟⎠

(d) We need to use generalized least squares (because cov(Y) �= σ2I) and
calculate (X′V−1X)−1X′V−1Y where V ≡ cov(Y).

V−1 = 1
(σ2+τ2)2−τ4

⎛
⎜⎜⎝

σ2 + τ2 −τ2 0 0
−τ2 σ2 + τ2

0 0 σ2 + τ2 −τ2

0 0 −τ2 σ2 + τ2

⎞
⎟⎟⎠

X′V−1 = 1
(σ2(σ2+2τ2)

⎛
⎝ σ2 σ2 σ2 σ2

σ2 σ2 −σ2 −σ2

σ2 + 2τ2 −σ2 − 2τ2 σ2 + 2τ2 σ2 − 2τ2

⎞
⎠

(X′V−1X)−1 = diag
(

σ2+2τ2

4
, σ2+2τ2

4
, σ2

4

)

(X′V−1X)−1X′V−1 = 1
4

⎛
⎝ 1 1 1 1

1 1 −1 −1
1 −1 1 −1

⎞
⎠

⎛
⎝ µ̂

P̂1

V̂1

⎞
⎠ = (X′V−1X)−1X′V−1Y =

⎛
⎝

y11+y12+y21+y22
4

y11+y12−y21−y22
4

y11−y12+y21−y22
4

⎞
⎠

Similary to part (b) we have V̂1 = 1
4 (y11 − y12 + y21 − y22).

Since V̂1 − V̂2 = 2V̂1 for the chosen linear constraint, we get V̂1 − V̂2 = 1
2 (y11 − y12 + y21 − y22) =

ȳ·1 − ȳ·2.
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4. Suppose an experiment is done to compare three varieties of tomatoes in plots that can hold two
plants each. There are three such plots available for the study, and the experimental design is

1 2
2 3
1 3

(plants will be randomized within a plot).

The statistical model is yij = µ + Pi + Vj + εij for i = 1, 2, 3 plots and j = 1, 2, 3 varieties. Assume
the errors ε are uncorrelated and have variance σ2.

For (a) and (c) use the data vector Y written in the order

y11

y12

y22

y23

y31

y33

(a) What is cov(Y) when the “plot effects” Pi are considered fixed effects?
(b) What is the formula for the best linear unbiased estimator of V̂1 − V̂2 in terms of the Yij when
the Pi are considered fixed effects?
(c) What is cov(Y) when the “plot effects” Pi are considered random effects with variance τ2?
(d) What is the formula for the best linear unbiased estimator of V̂1 − V̂2 in terms of the Yij when
the Pi are considered random effects with variance τ2? Treat σ2 and τ2 as known.

Solution:
(a) cov(Y) = σ2I

(b) We go through the same mechanics as for problem 3(a). To give some insight into the result,
note that E[y11 − y12] = V1 − V2 since

all the plot effects cancel out. Similarly,
E[y31 − y33 + y23 − y22] = V1 − V2. These are two linear unbiased estimates of V1 − V2, and they

use different parts of the data so they have covariance 0. If we call these estimators θ̂1 and θ̂2, then
any combination cθ̂1 + (1 − c)θ̂2, c ∈ [0, 1] is also a linear unbiased estimate. It turns out that the
BLUE gotten from the linear model and the Gauss-Markov Theorem has this form with c = 2

3 .

(c) cov(Y) =

⎛
⎜⎜⎜⎜⎜⎜⎝

σ2 + τ2 τ2 0 0 0 0
τ2 σ2 + τ2 0 0 0 0
0 0 σ2 + τ2 τ2 0 0
0 0 τ2 σ2 + τ2 0 0
0 0 0 0 σ2 + τ2 τ2

0 0 0 0 τ2 σ2 + τ2

⎞
⎟⎟⎟⎟⎟⎟⎠

(d) For the design matrix X we use the constraint P3 = −P1 − P2 and V3 = −V1 − V2 (i.e.,∑3
i=1 Pi = 0 and

∑3
i=1 Vi = 0);

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0 1 0
1 1 0 0 1
1 0 1 0 1
1 0 1 0 0
1 0 0 1 0
1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

After many steps of computation we obtain
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⎛
⎜⎜⎜⎜⎝

µ̂

P̂1

P̂2

V̂1

V̂2

⎞
⎟⎟⎟⎟⎠ = (X′V−1X)−1X′V−1Y =

⎛
⎜⎜⎜⎜⎝

(−y11 + y12 − y22 + y23 + y31 + 5y33)/6
(2y11 + y12 − y22 + y23 − 2y31 − y33)/3
(y11 − y12 + y22 + 2y23 − y31 − 2y33)/3
(y11 − y12 + y22 − y23 + 2y31 − 2y33)/3

(−y11 + y12 + 2y22 − 2y23 + y31 − y33)/3

⎞
⎟⎟⎟⎟⎠

Thus, the best linear unbiased estimator of V1 − V2 is

V̂1 − V̂2 =
2y11 − 2y12 − y22 − 3y23 + y31 − 3y33

3
.

5. Random regressors. Consider the model

Yi = β0 + β1xi + εi, i = 1, . . . , n;

where
(

xi

εi

)
∼ N2

((
µx

0

)
,

(
σ2

x 0
0 σ2

ε

))
.

We have
(

Yi

xi

)
∼ N2

((
µy

µx

)
,

(
σ2

y σxY

σxY σ2
x

))
,

where σ2
y = β2

1σ2
x + σ2

ε , µy = β0 + β1µx, and σxY = β1σ
2
x.

(a) Derive E[Yi|xi] and var[Yi|xi].

Now suppose one does not observe
xi, i = 1, 2, . . . , n; but observes wi = xi + ui, where

⎛
⎝ xi

εi

ui

⎞
⎠ ∼ N3

⎛
⎝

⎛
⎝ µx

0
0

⎞
⎠ ,

⎛
⎝ σ2

x 0 0
0 σ2

ε 0
0 0 σ2

ε

⎞
⎠

⎞
⎠ .

Assume that Y is conditionally independent of w: E[Yi|xi, wi] = E[Yi|xi]. Suppose the true model
is E[Yi | xi] = β0 + β1xi but the observed data are (Yi, wi), i = 1, 2, . . . , n.

(b) Relate E[Yi | wi] to E[xi | wi].

(c) What is the joint distribution of xi and wi and what is E[xi | wi]?

(d) Combine your answers to (b) and (c) to show that
E[Yi|wi] = β∗

0 + β∗
1wi.
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(e) What is the relationship between β∗
0 , β∗

1 and β0, β1?

Solution: (a)

E[Yi | xi] = µy + σxY /σ2
x(xi − µx)

= β0 + β1µx + β1σ
2
x/σ2

x(xi − µx)
= β0 + β1xi

V ar[Yi | xi] = σ2
y − σ2

xY /σ2
x

= β2
1σ2

x + σ2
ε − (β1σ

2
x)2/σ2

x

= σ2
ε .

(b)

E[Yi | wi] = Ex[E[Yi | xi, wi] | wi]
= Ex[E[Yi | xi] | wi]
= Ex[β0 + β1xi | wi]
= β0 + β1E[xi | wi].

(c)
(

xi

wi

)
∼ N2

((
µx

µx

)
,

(
σ2

x σ2
x

σ2
x σ2

x + σ2
u

))
.

The conditional mean E[xi | wi] is then

E[xi | wi] = µx +
σxw

σ2
w

(wi − µx)

= µx +
σ2

x

σ2
x + σ2

u

(wi − µx)

= µx
σ2

u

σ2
x + σ2

u

+
σ2

x

σ2
x + σ2

w

wi

(d)
The conditional mean E[Yi | wi] (in terms of

Y and w is then

E[Yi | wi] = β0 + β1E[xi | wi]

= β0 + β1[µx
σ2

u

σ2
x + σ2

u

+
σ2

x

σ2
x + σ2

w

wi]

= β0 + β1µx
σ2

u

σ2
x + σ2

u

+ β1
σ2

x

σ2
x + σ2

u

wi

= β∗
0 + β∗

1wi.
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(e) You can see from part (d) above that

β∗
0 = β0 + β1µx

σ2
u

σ2
x + σ2

u

and

β∗
1 = β1

σ2
x

σ2
x + σ2

u
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