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THE CLASSICAL LINEAR MODEL

• Most commonly used statistical models

• Flexible models

• Well-developed and understood properties

• Ease of interpretation

• Building block for more general models

1. General Linear Model

2. Generalized Linear Model

3. Generalized Estimating Equations

4. Generalized Linear Mixed Model, etc.

5. Heirarchical Generalized Linear Mixed Model, etc.

EXAMPLES:

1. EXAMPLE 1. Simple linear regression.

Objective: Relate weight to blood pressure.

Consider a random sample of n individuals. The i-th patient has
weight xi and blood pressure Yi (i = 1, 2, . . . , n).

Model:

Yi = β0 + β1xi + εi,

where

• Yi is the response variable,

• xi is a regressor variable,

• β0, β1 are regression coefficients – unknown model parameters
to be estimated,

• εi is an error term.
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Figure 1

y= x + 3*x^2

y= -123 + 49*x

2. EXAMPLE 2. Polynomial regression.

Objective: Same as EXAMPLE 1.

Model:

Yi = β0 + β1xi + β2x
2

i + εi

Is this still a linear model?

3. EXAMPLE 3. Multiple linear regression.

Objective: Relate blood pressure to weight and age.

For the i-th patient, xi1 = is weight and xi2 = is age.

Model:

Yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi

where xi3 = xi1 × xi2 is the weight-by-age interaction term.
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4. EXAMPLE 4. Data Transformations.

Seber & Lee, Example 1.2–The Law of Gravity

The Inverse Square Law states that the force of gravity F between

two bodies a distance D apart is given by

F =
c

Dβ
.

Question: By transforming variables, how can this be viewed as a
linear regression model for the paramter β?

Model:

Yi = β0 + β1xi + εi,

• where Yi = log(Fi),

• xi = −log(Di),

• β0 = log(c),

• β1 = β,

• εi is an error term.

Seber states “. . . and from experimental data we can estimate β

and test whether β = 2.”



4 1. INTRODUCTION TO LINEAR MODELS

MATRIX REPRESENTATION OF LINEAR MODELS

The general linear model in matrix form:
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Equivalent shorthand form:

Y = Xβ + ε

Y (n × 1) is the response vector

X (n × p) is the design (or model or regression) matrix

β (p×1) is the vector of regression coefficients (model parameters)

ε (n × 1) is the error vector (mean 0)

(a) Example 1
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(b) Example 2
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(c) Example 3
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(d) Example 4
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(e) EXAMPLE 5. One-way analysis of variance.

Objective: Compare two treatments for blood pressure.

Consider random samples of J individuals taking one of two

blood pressure medications. Yij is the blood pressure for indi-

vidual j from treatment group i.

Model:

Yij = µ + αi + εij

• µ = overall mean blood pressure,

• αi = effect on blood pressure for treatment i (i = 1, 2),

• εij = error term for subject j receiving treatment i.

Alternate Model Representation:

Yij = µ + α1I1 + α2I2 + εij

where I1 is an indicator variable for membership in treatment
group 1 and I2 is an indicator variable for membership in treat-

ment group 2.

(f) EXAMPLE 6. Two-way analysis of variance.

Objective: Same as EXAMPLE 5, but we now also consider
a patient’s sex.

Model:

Yijk = µ + αi + βj + εijk

• µ = overall mean blood pressure,

• αi = effect on blood pressure for treatment i (i = 1, 2),

• βj = effect on blood pressure for sex j (j = 1, 2),

• εijk = error term for subject k of sex j receiving tmnt i.

Alternate Model Representation:

Yij = µ + α1I1 + α2I2 + +β1J1 + β2J2 + εijk

where I1 is an indicator variable for membership in treatment
group 1, I2 is an indicator variable for membership in treat-

ment group 2, J1 indicates sex 1, and J2 indicates sex 2.
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(g) EXAMPLE 7. Analysis of covariance.

Objective: Same as EXAMPLE 5, controlling for age.

Model:

Yij = µ + αi + β(xij − x̄..) + εij

• µ = overall mean blood pressure,

• αi = effect on blood pressure for treatment i (i = 1, 2),

• β = slope parameter,

• xij = age of subject j receiving treatment i,

• x̄.. = overall mean age,

• εij = error term for subject j receiving treatment i.

Note:

The alternative model representations for these ANOVA and AN-

COVA models make it clear that these are linear models. Let’s

continue with matrix representation of these models.

5. Example 5
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6. Example 6













































Y111

...

Y11K

Y121

...

Y12K

Y211

...

Y21K

Y221

...
Y22K













































=













































1 1 0 1 0
...

...
...

...
...

1 1 0 1 0

1 1 0 0 1
...

...
...

...
...

1 1 0 0 1

1 0 1 1 0
...

...
...

...
...

1 0 1 1 0

1 0 1 0 1
...

...
...

...
...

1 0 1 0 1

























































µ

α1

α2

β1

β2













+













































ε111

...

ε11K

ε121

...

ε12K

ε211

...

ε21K

ε221

...
ε22K













































7. Example 7
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In Summary: Linear models have the form

Y = Xβ + ε,

where Yn×1 response vector, Xn×p model matrix, βp×1 vector of un-

known regression parameters, εn×1 mean zero random error vector.

Notes:

1. Usually xi0 = 1 for all i. That is, usually there is an intercept β0

in the model and the first column of the design matrix X is all 1’s.

2. xi0, xi1, . . . , xi,p−1 are called the predictor variables or regressor

variables or the covariates. They are the data.

3. “Linear Model” means the model is linear in the unknown regres-

sion coefficients β0, β1, . . . , βp−1.

4. Instead of matrices, we can write the model in terms of vectors:

Y =

p−1
∑

j=0

βjxj + ε,

where xj = (x1j, x2j , . . . , xnj)
′. (Also note that we will use the

convention in this course that a vector is a column vector.)

5. ε is the random part of the model. Right now we just assume

that E(ε) = 0. Later, we will make more assumptions about the

distribution of ε.

6. Y is random because ε is random. Y “inherits” randomness from

ε.

7. We can thus evaluate

E[Y] = E[

p−1
∑

j=0

βjxj + ε] = E[

p−1
∑

j=0

βjxj ] + E[ε] =

p−1
∑

j=0

βjxj .

8. The vector E[Y] is a linear combination of the xj .

9. E[Y] ∈ span(x0,x1, . . . ,xp−1) ≡ Ω,
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FACT: We obtain least squares estimators (LSE’s) of the βj , denoted

β̂j , by projecting Y onto Ω. Note that Y is n-dimensional and Ω has

dimension ≤ p. The projection of Y onto Ω is denoted Ŷ.

In Class Exercise: Model Yi = βxi + εi (linear regression through the

origin)

Two datasets:

1. {(x, y) = (2, 1), (0, 1)}

2. {(x, y) = (1, 2), (1/2, 2)}

For each dataset:

1. Write out the model with vectors and matrices (using the data).

2. Show the vectors y and x on a graph.

3. Identify (on your graph) Ω,

4. Plot ŷ = ProjΩ(y),

5. Plot ε̂ = y − ŷ, identify Ω⊥

6. What is the dimension of Ω? What is the dimension of Ω⊥?

7. Also make a scatterplot of the data and sketch the least squares

line.

8. Alternatively, if we fit the model Yi = β0 + β1xi + εi, how do your

answers to the previous questions change?
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