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For a general linear model Y = Xβ + ε we have the general

result that for the least-squares estimate

var(β̂) = σ2(X′
X)−1

in the full rank case or, more generally,

var(a′β̂) = σ2
a
′(X′

X)−a

when a
′β is estimable. Therefore, how well we estimate our

parameters depends on the error variance and the values of the

predictors X. In particular it does not depend on the data Y(!).

ORTHOGONAL STRUCTURE IN THE DESIGN MATRIX

Partition the linear model as

E[Y] = (X0,X1, · · · ,Xk)








β0

β1
...

βk








,

where Xj is n× pj, βj is pj × 1, and
∑

j pj = p. Suppose that

the columns of Xi are orthogonal to those of Xj, i.e.,

X
′
iXj = 0, for all i, j.

Then β̂ = (X′
X)−1

X
′
Y has the form








β̂0

β̂1
...

β̂k








=








(X′
0X0)

−1
0 · · · 0

0 (X′
1X1)

−1 · · · 0
... ... . . . ...

0 0 · · · (X′
kXk)

−1















X
′
0Y

X
′
1Y
...

X
′
kY








=








(X′
0X0)

−1
X

′
0Y

(X′
1X1)

−1
X

′
1Y

...

(X′
kXk)

−1
X

′
kY








.
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Therefore, the least-squares estimate of βi does not depend on

any of the other terms are in the model.

Also,

RSS = (Y − Ŷ)′(Y − Ŷ)

= Y
′
Y − Ŷ

′
Y − Y

′
︸︷︷︸

Y=Ŷ+ε̂

Ŷ + Ŷ
′
Ŷ

= Y
′
Y − Ŷ

′
Y − (Ŷ + ε̂)′Ŷ + Ŷ

′
Ŷ

= Y
′
Y − Ŷ

′
Y − ε̂′

Ŷ

= Y
′
Y − Ŷ

′
Y

= Y
′
Y − β̂

′
X

′
Y

= Y
′
Y −

k∑

i=0

β̂
′

iX
′
iY

Therefore if βi is set equal to 0, RSS increases by β̂
′

iX
′
iY.
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In-Class Exercise: (Simple linear regression). Consider simple

linear regression with the usual model Yi = β0 + β1xi + εi and

also using the no-intercept model Yi = β1xi + εi. For both

models, find a formula for the estimate of the slope parameter

β1. When will the two estimates be the same?

For the with-intercept model, the least-squares estimate of β1

is

β̂1 =
n∑

i=1

(xi − x̄)Yi/
n∑

i=1

(xi − x̄)2.

For the no-intercepet model, the least-squares estimate of β1 is

β̂1 =

n∑

i=1

xiYi/

n∑

i=1

x2

i .

The slope estimates in the two models will be equal when x̄ =

0, i.e., when x = (x1, . . . , xn)
′ is orthogonal to the intercept

1 = (1, . . . , 1)′.
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In-Class Exercise: Consider an adjustment to the basic linear

model:

Yi = β0 + β1x̄ + β1(xi − x̄) + εi

= β∗
0 + β1(xi − x̄) + εi,

What is the design matrix? Does it have orthogonal structure?

Use the result on page 1 to find β̂0 and β̂1. Compare your

formula for β̂1 to the formula for the with-intercept model on

the last page.

X =








1 x1 − x̄

1 x2 − x̄
... ...

1 xn − x̄








= (x0,x1)

has orthogonal columns and so by the result on p. 1,

β̂∗
0 =

x
′
0Y

x′
0
x0

= Ȳ ,

β̂1 =
x
′
1Y

x′
1
x1

=
n∑

i=1

(xi − x̄)Yi/
n∑

i=1

(xi − x̄)2.
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Orthogonality and precision of least-squares estimates:

Theorem: (Seber & Lee Exercise 3e.3). Assume the linear

model Y ∼ Nn(Xβ, σ2
I), where the columns of X are linearly

independent (so we’re in the full rank case). Further suppose

that

x
′
ixi ≤ c2

i ,

for fixed constants ci. Then

var(β̂i) ≥ σ2/c2

i ,

and the minimum is attained when x
′
ixi = c2

i , and the columns

of X are orthogonal, i.e., x′
ixj = 0, for j 6= i.

Example: (2k factorial design). Suppose that k factors are to

be studied to determine their effect on the output of a man-

ufacturing process. Each factor is to be varied within a given

plausible range of values and the variables have been scaled so

that the range is −1 to +1. Then the theorem implies that the

optimal design has orthogonal columns and all variables set to

+1 or −1. Such a design is called a 2k factorial design.
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Lemma: If A and D are symmetric and all inverses exist,
(

A B

B
′

D

)−1

=

(
A

−1 + A
−1

BE
−1

B
′
A

−1 −A
−1

BE
−1

−E
−1

B
′
A

−1
E

−1

)

,

where E = D − B
′
A

−1
B.

Proof: Check that the matrix times the candidate inverse ma-

trix gives the identity.

Proof of the Theorem: Let k = p − 1. For convenience,

assume that βi is in the last position, i.e., i = k, (reordering

the columns of X if necessary).

Write X = (x0,x1, . . . ,xk) = (W,xk). Then

X
′
X =

(
W

′
W W

′
xk

x
′
kW x

′
kxk

)

.

Now apply the lemma:

var(β̂k) =
σ2

x′
kxk − x′

kW(W′W)−1W′xk

.

We can show that x
′
kxk −x

′
kW(W′

W)−1
W

′
xk ≤ x

′
kxk It fol-

lows that var(β̂k) ≥ σ2/c2
k, with equality if and only if x

′
kxk =

c2
k and x

′
jxk = 0 for all j 6= k.
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MULTICOLLINEARITY

A useful expression for var(a′β̂) can be obtained from the the-

orem as follows. Because X
′
X is p.s.d. with rank r, it must

have r positive eigenvalues λ1, . . . , λr and p−r zero eigenvalues.

Therefore, there is an orthogonal T such that

T
′(X′

X)T = Λ = diag(λ1, . . . , λr, 0, . . . , 0).

Now a generalized inverse of Λ is (check it!)

Λ
− = diag(λ−1

1 , . . . , λ−1

r , 0, . . . , 0).

and a generalized inverse of X
′
X is

(X′
X)− = TΛ

−
T

′.

Therefore,

var(a′β̂) = σ2
a
′(X′

X)−a

= σ2
a
′
TΛ

−
T

′
a

= σ2
c
′
Λ

−
c, (c = T

′
a)

= σ2

r∑

i=1

c2

i λ
−1

i .

This formula identifies the effect of multicollinearity, i.e., near

linear dependencies in columns of X. Which functions a
′β will

be most affected by multicollinearity? If a = aαi, where αi is

a column of T (eigenvector of X
′
X), then c = T

′(aαi) = aei,

where ei = (0, . . . , 0, 1, 0, . . . , 0)′ with 1 in the ith component.

Then var(a′β̂) = a2σ2λ−1

i . If λi is small (but positive), var(a′β̂)

will be large.
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Suppose we can get one more observation and we can choose the

values of the predictor variables x
′
n+1 = (xn+1,0, . . . , xn+1,p−1)

for the next observation Yn+1. What values should we choose?

The model for the full data set is
(

Y

Yn+1

)

=

(
X

x
′
n+1

)

β +

(
ε

εn+1

)

= X∗β + ε∗.

Suppose we choose x
′
n+1 = aα′

i where αi is an eigenvector of

X
′
X with eigenvalue λi. Except for this particular eigenvector

αi, the eigenvectors of X
′
∗X∗ are the same as those of X

′
X

with the same eigenvalues:

X∗ =

(
X

x
′
n+1

)

X
′
∗X∗ =

(
X xn+1

)
(

X

x
′
n+1

)

= X
′
X + xn+1x

′
n+1

Let α be an eigenvector of X
′
X (with eigenvalue λ) different

from xn+1.

X
′
∗X∗α = (X′

X + xn+1x
′
n+1)α = X

′
Xα + xn+1x

′
n+1α

= X
′
Xα = λα

since the eigenvectors of X
′
X are orthogonal.
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For the particular eigenvector αi with eigenvalue λi:

X
′
∗X∗αi = (X′

X + xn+1x
′
n+1)αi

= X
′
Xαi + a2αiα

′
iαi

= λiαi + a2αi = (λi + a2)αi

Therefore, it may be best to choose xn+1 to be proportional to

the eigenvector with the smallest positive eigenvalue. This will

increase the smallest positive eigenvalue in the extended design

matrix, and thereby decrease the worst-case variability.


