12.1. Clustered Data

A Motivating Example: Let

$$
\mathbf{Y} = \begin{pmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \\ \vdots \\ \mathbf{Y}_K \end{pmatrix},
$$

where $\mathbf{Y}_i = (Y_{i1}, \ldots, Y_{in_i})'$ is a vector of responses on the *i*th cluster (patient, household, school, etc.). Assuming clusters are independent,

$$
cov(\mathbf{Y}) = \left(\begin{array}{cccc} \mathbf{V}_1 & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{V}_2 & \cdots & \vdots \\ \vdots & \vdots & \ddots & \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} & \mathbf{V}_K \end{array}\right),
$$

where we might assume a common variance σ^2 and common pairwise correlation ρ within a cluster, i.e., an *exchangeable* correlation structure:

$$
cov(\mathbf{Y}_i) = \sigma^2 \mathbf{V}_i = \sigma^2 \begin{pmatrix} 1 & \rho & \cdots & \rho \\ \rho & 1 & \cdots & \vdots \\ \vdots & \vdots & \ddots & \rho \\ \rho & \cdots & \rho & 1 \end{pmatrix}_{n_i \times n_i}
$$

.

12.2. Generalized Least Squares Estimates

If we relax the assumption $cov(\mathbf{Y}) = \sigma^2 \mathbf{I}$ what are the implications for estimation of β ? In general, let

$$
cov(\mathbf{Y}) = \sigma^2 \mathbf{V}, \text{ for some } known \mathbf{V}.
$$

In practice, we do not know \bf{V} and have to estimate it (e.g., estimate the correlation parameter ρ in the exchangeable case).

Question: Let $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, where $\text{rank}(\mathbf{X}_{n \times p}) = p$, $E[\boldsymbol{\varepsilon}] = \mathbf{0}$, $cov(\boldsymbol{\varepsilon}) = \sigma^2 \mathbf{V}$, with known p.d. **V**. How to estimate $\boldsymbol{\beta}$?

Solution: Transform \bf{Y} to a new response vector that has covariance matrix $\sigma^2 I$. Apply our knowledge of least squares estimates to transformed Y .

Details: Since **V** is p.d., $V = KK'$ for non-singular **K** (e.g., there is orthogonal T, diagonal Λ , such that $V = T\Lambda T' =$ $(\mathbf{T}\mathbf{\Lambda}^{1/2})(\mathbf{T}\mathbf{\Lambda}^{1/2})'.$

For the transformed response $\mathbf{Z} = \mathbf{K}^{-1} \mathbf{Y}$:

$$
\mathbf{K}^{-1}\mathbf{Y} = \mathbf{K}^{-1}\mathbf{X}\boldsymbol{\beta} + \mathbf{K}^{-1}\boldsymbol{\varepsilon}
$$

$$
\mathbf{Z} = \mathbf{B}\boldsymbol{\beta} + \boldsymbol{\eta},
$$

where

$$
E[\boldsymbol{\eta}] = E[\mathbf{K}^{-1}\boldsymbol{\varepsilon}] = \mathbf{K}^{-1}E[\boldsymbol{\varepsilon}] = \mathbf{0}
$$

cov(\boldsymbol{\eta}) = cov(\mathbf{K}^{-1}\boldsymbol{\varepsilon}) = \mathbf{K}^{-1}\sigma^2 \mathbf{V}(\mathbf{K}^{-1})' = \sigma^2 \mathbf{K}^{-1} \mathbf{K} \mathbf{K}'(\mathbf{K}^{-1})' = \sigma^2 \mathbf{I}.
Note that $\boldsymbol{\beta}$ is not transformed.

Apply the usual least-squares formula:

$$
\begin{aligned} \beta^* &= (\mathbf{B}'\mathbf{B})^{-1}\mathbf{B}'\mathbf{Z} \\ &= [(\mathbf{K}^{-1}\mathbf{X})'\mathbf{K}^{-1}\mathbf{X}]^{-1}(\mathbf{K}^{-1}\mathbf{X})'\mathbf{K}^{-1}\mathbf{Y} \\ &= [\mathbf{X}'(\mathbf{K}\mathbf{K}')^{-1}\mathbf{X}]^{-1}\mathbf{X}'(\mathbf{K}\mathbf{K}')^{-1}\mathbf{Y} \\ &= (\mathbf{X}'\mathbf{V}^{-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{V}^{-1}\mathbf{Y} \end{aligned}
$$

 β^* is the *Generalized Least Squares* (GLS) estimate.

12.3. Properties of the GLS Estimate β^*

1. Unbiased:

$$
E[\boldsymbol{\beta}^*] = E[(\mathbf{X}'\mathbf{V}^{-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{V}^{-1}\mathbf{Y}]
$$

$$
= (\mathbf{X}'\mathbf{V}^{-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{V}^{-1}E[\mathbf{Y}] = \boldsymbol{\beta}
$$

2.

$$
cov(\boldsymbol{\beta}^*) = \sigma^2 (\mathbf{B}'\mathbf{B})^{-1} = \sigma^2 (\mathbf{X}'\mathbf{V}^{-1}\mathbf{X})^{-1},
$$

3.

$$
RSS = (\mathbf{Z} - \mathbf{B}\boldsymbol{\beta}^*)'(\mathbf{Z} - \mathbf{B}\boldsymbol{\beta}^*)
$$

=
$$
[\mathbf{K}^{-1}(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}^*)]'[\mathbf{K}^{-1}(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}^*)]
$$

=
$$
(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}^*)'(\mathbf{K}\mathbf{K}')^{-1}(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}^*)
$$

=
$$
(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}^*)'\mathbf{V}^{-1}(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}^*)
$$

12.4. GLS versus OLS Estimates

Suppose $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, with $E[\boldsymbol{\varepsilon}] = \mathbf{0}$ and $\text{cov}(\boldsymbol{\varepsilon}) = \sigma^2 \mathbf{V}$. GLS (Generalized Least Squares):

$$
\boldsymbol{\beta}^* = (\mathbf{X}'\mathbf{V}^{-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{V}^{-1}\mathbf{Y}.
$$

OLS (Ordinary Least Squares):

$$
\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}.
$$

Both estimates are unbiased. We saw $cov(\boldsymbol{\beta}^*) = \sigma^2 (\mathbf{X}' \mathbf{V}^{-1} \mathbf{X})^{-1}$.

We see that $cov(\hat{\boldsymbol{\beta}}) = \sigma^2 (\mathbf{X}'\mathbf{X})^{-1} (\mathbf{X}'\mathbf{V}\mathbf{X}) (\mathbf{X}'\mathbf{X})^{-1}$

What if we go ahead and used the OLS estimates, even when $cov(\mathbf{Y}) = \sigma^2 \mathbf{V}$? Which is more efficient, GLS or OLS?

Theorem: (Optimality of GLS estimates). If $E[Y] = \mathbf{X}\boldsymbol{\beta}$ and cov(Y) = $\sigma^2 V$, then for any constant vector **a**, $a' \beta^*$ is the BLUE of $a'\beta$.

Proof: $a'\beta^*$ is unbiased because β^* is unbiased, and $a'\beta^*$ is linear in $\mathbf Y$ because

$$
\mathbf{a}'\boldsymbol{\beta}^*=\mathbf{a}'(\mathbf{X}'\mathbf{V}^{-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{V}^{-1}\mathbf{Y}=\mathbf{b}'\mathbf{Y},
$$

for $\mathbf{b}' = \mathbf{a}' (\mathbf{X}' \mathbf{V}^{-1} \mathbf{X})^{-1} \mathbf{X}' \mathbf{V}^{-1}$.

Let $\mathbf{b}'_1\mathbf{Y}$ be any linear unbiased estimate of $\mathbf{a}'\mathbf{\beta}$. Then

$$
\mathbf{b}_1'\mathbf{Y}=\mathbf{b}_1'\mathbf{KZ}=(\mathbf{K}'\mathbf{b}_1)'\mathbf{Z}
$$

is also linear in Z.

For Z we know that the least-squares estimate is the BLUE, $a'\beta^* = a'(B'B)^{-1}B'Z$ has minimum variance among all unbiased estimates of $a'\beta$ that are linear in **Z**, i.e.,

 $var(\mathbf{a}'(\mathbf{B}'\mathbf{B})^{-1}\mathbf{B}'\mathbf{Z}) \leq var([\mathbf{K}'\mathbf{b}_1]' \mathbf{Z}),$

with equality if and only if

$$
(\mathbf{K}'\mathbf{b}_1)' = \mathbf{a}'(\mathbf{B}'\mathbf{B})^{-1}\mathbf{B}'
$$

i.e., ${\bf b}_1' {\bf K} = {\bf a}' ({\bf B}'{\bf B})^{-1} {\bf B}'$

$$
b'_{1} = a'(B'B)^{-1}B'K^{-1}
$$

= a'(X'V⁻¹X)⁻¹X'(K⁻¹)'K⁻¹
= a'(X'V⁻¹X)⁻¹X'V⁻¹.

Therefore, we have shown that

$$
\mathrm{var}(\mathbf{a}'\boldsymbol{\beta}^*) \leq \mathrm{var}(\mathbf{b}'_1\mathbf{Y}),
$$

with equality if and only if $\mathbf{b}'_1\mathbf{Y} = \mathbf{a}'\boldsymbol{\beta}^*$.

In-Class Exercise: (Heteroscedasticity and Weighted least squares). Let Y_1, \ldots, Y_n be independent, $E[Y_i] = \beta x_i$, and $var(Y_i) =$ $\sigma^2 w_i^{-1}$ i^{-1} . Find the GLS and OLS estimates of β and their variances.

The GLS estimate of β is

$$
\beta^* = \frac{\sum_{i=1}^n w_i x_i Y_i}{\sum_{i=1}^n w_i x_i^2}.
$$

The OLS estimate is

$$
\hat{\boldsymbol{\beta}} = \frac{\sum_{i=1}^n x_i Y_i}{\sum_{i=1}^n x_i^2}.
$$

The variances are

$$
\operatorname{var}(\boldsymbol{\beta}^*) = \frac{\sigma^2}{\sum_{i=1}^n w_i x_i^2},
$$

$$
\operatorname{var}(\hat{\boldsymbol{\beta}}) = \frac{\sigma^2 \sum_{i=1}^n \frac{x_i^2}{w_i}}{(\sum_{i=1}^n x_i^2)^2}.
$$

12.5. When are GLS and OLS Estimates are Equivalent?

Theorem: A necessary and sufficient condition for the GLS estimate (β^*) and the OLS estimate $(\hat{\boldsymbol{\beta}})$ to be equal is $\mathcal{R}(\mathbf{V}^{-1}\mathbf{X})=$ $\mathcal{R}(\mathbf{X})$.

Proof: Let $Y = Y_1 + Y_2$, where $Y_1 \in \mathcal{R}(X)$, and $Y_2 \in$ $\mathcal{R}(\mathbf{X})^{\perp}$, Then $\mathbf{Y}_1 = \mathbf{X} \mathbf{a}$ for some \mathbf{a} and $\mathbf{X}' \mathbf{Y}_2 = \mathbf{0}$. Then

$$
\begin{aligned} \boldsymbol{\beta}^* &= (\mathbf{X}'\mathbf{V}^{-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{V}^{-1}(\mathbf{Y}_1 + \mathbf{Y}_2) \\ &= (\mathbf{X}'\mathbf{V}^{-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{V}^{-1}\mathbf{X}\mathbf{a} + (\mathbf{X}'\mathbf{V}^{-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{V}^{-1}\mathbf{Y}_2 \\ &= \mathbf{a} + (\mathbf{X}'\mathbf{V}^{-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{V}^{-1}\mathbf{Y}_2, \end{aligned}
$$

and

$$
\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\mathbf{Y}_1 + \mathbf{Y}_2)
$$

= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\mathbf{a} + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}_2
= \mathbf{a} + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}_2 = \mathbf{a}.

Therefore, $\boldsymbol{\beta}^* = \hat{\boldsymbol{\beta}}$ if and only if

$$
(\mathbf{X}'\mathbf{V}^{-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{V}^{-1}\mathbf{Y}_2 = \mathbf{0}
$$

if and only if

$$
\mathbf{X}'\mathbf{V}^{-1}\mathbf{Y}_2 = \mathbf{0} = (\mathbf{V}^{-1}\mathbf{X})'\mathbf{Y}_2,
$$

That is, \mathbf{Y}_2 , which is in $\mathcal{R}(\mathbf{X})^{\perp}$, must also be orthogonal to $\mathcal{R}(\mathbf{V}^{-1}\mathbf{X})$. So the the estimates are equal if and only if $\mathcal{R}(\mathbf{X})^{\perp} \subset$ $\mathcal{R}(\mathbf{V}^{-1}\mathbf{X})^{\perp}$. But the two spaces have the same dimension, so $\mathcal{R}(\mathbf{X})^{\perp} = \mathcal{R}(\mathbf{V}^{-1}\mathbf{X})^{\perp}$ and $\mathcal{R}(\mathbf{X}) = \mathcal{R}(\mathbf{V}^{-1}\mathbf{X}).$

Corollary: The GLS and OLS estimates are equal if and only if $\mathcal{R}(VX) = \mathcal{R}(X)$.

Proof: Exercise.