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12.1. Clustered Data

A Motivating Example: Let

Y =











Y1

Y2

...

YK











,

where Yi = (Yi1, . . . , Yini
)′ is a vector of responses on the ith

cluster (patient, household, school, etc.). Assuming clusters

are independent,

cov(Y) =











V1 0 · · · 0

0 V2 · · ·
...

... ... . . . 0

0 · · · 0 VK











,

where we might assume a common variance σ2 and common

pairwise correlation ρ within a cluster, i.e., an exchangeable

correlation structure:

cov(Yi) = σ2
Vi = σ2











1 ρ · · · ρ

ρ 1 · · ·
...

... ... . . . ρ

ρ · · · ρ 1











ni×ni

.
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12.2. Generalized Least Squares Estimates

If we relax the assumption cov(Y) = σ2
I what are the impli-

cations for estimation of β? In general, let

cov(Y) = σ2
V, for some knownV.

In practice, we do not know V and have to estimate it (e.g.,

estimate the correlation parameter ρ in the exchangeable case).

Question: Let Y = Xβ+ε, where rank(Xn×p) = p, E[ε] = 0,

cov(ε) = σ2
V, with known p.d. V. How to estimate β?

Solution: Transform Y to a new response vector that has co-

variance matrix σ2
I. Apply our knowledge of least squares es-

timates to transformed Y.
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Details: Since V is p.d., V = KK
′ for non-singular K (e.g.,

there is orthogonal T, diagonal Λ, such that V = TΛT
′ =

(TΛ
1/2)(TΛ

1/2)′).

For the transformed response Z = K
−1

Y:

K
−1

Y = K
−1

Xβ + K
−1ε

Z = Bβ + η,

where

E[η] = E[K−1ε] = K
−1E[ε] = 0

cov(η) = cov(K−1ε) = K
−1σ2

V(K−1)′ = σ2
K

−1
KK

′(K−1)′ = σ2
I.

Note that β is not transformed.

Apply the usual least-squares formula:

β∗ = (B′
B)−1

B
′
Z

= [(K−1
X)′K−1

X]−1(K−1
X)′K−1

Y

= [X′(KK
′)−1

X]−1
X

′(KK
′)−1

Y

= (X′
V

−1
X)−1

X
′
V

−1
Y

β∗ is the Generalized Least Squares (GLS) estimate.
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12.3. Properties of the GLS Estimate β∗

1. Unbiased:

E[β∗] = E[(X′
V

−1
X)−1

X
′
V

−1
Y]

= (X′
V

−1
X)−1

X
′
V

−1E[Y] = β

2.

cov(β∗) = σ2(B′
B)−1 = σ2(X′

V
−1

X)−1,

3.

RSS = (Z − Bβ∗)′(Z −Bβ∗)

= [K−1(Y − Xβ∗)]′[K−1(Y − Xβ∗)]

= (Y −Xβ∗)′(KK
′)−1(Y −Xβ∗)

= (Y −Xβ∗)′V−1(Y − Xβ∗)
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12.4. GLS versus OLS Estimates

Suppose Y = Xβ + ε, with E[ε] = 0 and cov(ε) = σ2
V.

GLS (Generalized Least Squares):

β∗ = (X′
V

−1
X)−1

X
′
V

−1
Y.

OLS (Ordinary Least Squares):

β̂ = (X′
X)−1

X
′
Y.

Both estimates are unbiased.

We saw cov(β∗) = σ2(X′
V

−1
X)−1.

We see that cov(β̂) = σ2(X′
X)−1(X′

VX)(X′
X)−1

What if we go ahead and used the OLS estimates, even when

cov(Y) = σ2
V? Which is more efficient, GLS or OLS?
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Theorem: (Optimality of GLS estimates). If E[Y ] = Xβ and

cov(Y) = σ2
V, then for any constant vector a, a

′β∗ is the

BLUE of a
′β.

Proof: a
′β∗ is unbiased because β∗ is unbiased, and a

′β∗ is

linear in Y because

a
′β∗ = a

′(X′
V

−1
X)−1

X
′
V

−1
Y = b

′
Y,

for b
′ = a

′(X′
V

−1
X)−1

X
′
V

−1.

Let b
′
1
Y be any linear unbiased estimate of a

′β. Then

b
′
1
Y = b

′
1
KZ = (K′

b1)
′
Z

is also linear in Z.

For Z we know that the least-squares estimate is the BLUE,

a
′β∗ = a

′(B′
B)−1

B
′
Z has minimum variance among all unbi-

ased estimates of a
′β that are linear in Z, i.e.,

var(a′(B′
B)−1

B
′
Z) ≤ var([K′

b1]
′
Z),

with equality if and only if

(K′
b1)

′ = a
′(B′

B)−1
B

′

i.e., b′
1
K = a

′(B′
B)−1

B
′

b
′
1

= a
′(B′

B)−1
B

′
K

−1

= a
′(X′

V
−1

X)−1
X

′(K−1)′K−1

= a
′(X′

V
−1

X)−1
X

′
V

−1.

Therefore, we have shown that

var(a′β∗) ≤ var(b′
1
Y),

with equality if and only if b
′
1
Y = a

′β∗.
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In-Class Exercise: (Heteroscedasticity and Weighted least squares).

Let Y1, . . . , Yn be independent, E[Yi] = βxi, and var(Yi) =

σ2w−1

i . Find the GLS and OLS estimates of β and their vari-

ances.

The GLS estimate of β is

β∗ =

∑n
i=1

wixiYi
∑n

i=1
wix

2

i

.

The OLS estimate is

β̂ =

∑n
i=1

xiYi
∑n

i=1
x2

i

.

The variances are

var(β∗) =
σ2

∑n
i=1

wix
2

i

,

var(β̂) =
σ2

∑n
i=1

x2

i

wi

(
∑n

i=1
x2

i )
2
.
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12.5. When are GLS and OLS Estimates are Equivalent?

Theorem: A necessary and sufficient condition for the GLS esti-

mate (β∗) and the OLS estimate (β̂) to be equal is R(V−1
X) =

R(X).

Proof: Let Y = Y1 + Y2, where Y1 ∈ R(X), and Y2 ∈

R(X)⊥, Then Y1 = Xa for some a and X
′
Y2 = 0. Then

β∗ = (X′
V

−1
X)−1

X
′
V

−1(Y1 + Y2)

= (X′
V

−1
X)−1

X
′
V

−1
Xa + (X′

V
−1

X)−1
X

′
V

−1
Y2

= a + (X′
V

−1
X)−1

X
′
V

−1
Y2,

and

β̂ = (X′
X)−1

X
′(Y1 + Y2)

= (X′
X)−1

X
′
Xa + (X′

X)−1
X

′
Y2

= a + (X′
X)−1

X
′
Y2 = a.

Therefore, β∗ = β̂ if and only if

(X′
V

−1
X)−1

X
′
V

−1
Y2 = 0

if and only if

X
′
V

−1
Y2 = 0 = (V−1

X)′Y2,

That is, Y2, which is in R(X)⊥, must also be orthogonal to

R(V−1
X). So the the estimates are equal if and only ifR(X)⊥ ⊂

R(V−1
X)⊥. But the two spaces have the same dimension, so

R(X)⊥ = R(V−1
X)⊥ and R(X) = R(V−1

X).

Corollary: The GLS and OLS estimates are equal if and only

if R(VX) = R(X).

Proof: Exercise.


