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13.1. Testable Hypotheses

Suppose we want to test the hypothesis:

H : Aq×pβp×1 = 0q×1.

In terms of the rows of A this can be written as




a
′
1
...

a
′
q



β = 0

i.e., a′
iβ = 0 for each row of A.

Definition: The hypothesis H : Aβ = 0 is testable if a
′
iβ is an

estimable function for each row ai of A.

Note: Recall that a
′
iβ is estimable if a

′
i = b

′
iX for some bi.

Therefore H : Aβ = 0 is testable if A = MX for some M,

i.e., the rows of A are linearly combinations of the rows of X.
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Example: (One-way ANOVA with 3 groups).

















Y11
...

Y1J

Y21
...

Y2J

Y31
...

Y3J


















=


















1 1 0 0
... ... ... ...

1 1 0 0

1 0 1 0
... ... ... ...

1 0 1 0

1 0 0 1
... ... ... ...

1 0 0 1

























µ

α1

α2

α3








+


















ε11
...

ε1J

ε21
...

ε2J

ε31
...

ε3J


















Examples of testable hypotheses are:

1. H : (1, 1, 0, 0)β = µ + α1 = 0

2. H : (1, 0, 1, 0)β = µ + α2 = 0

3. H : (1, 0, 0, 1)β = µ + α3 = 0

4. H : (0, 1,−1, 0)β = α1 − α2 = 0

5. H :

(
0 1 −1 0

0 0 1 −1

)

β =

(
α1 − α2

α2 − α3

)

=

(
0

0

)

,

i.e., α1 = α2 = α3 (no group effects).
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13.2. Development of the F -Test

How can we test H : Aβ = 0?

The idea is to fit the model with and without the linear restric-

tions. The RSS in the restricted case will always be larger.

However, if the hypothesis is true, the “additional” reduction

in the RSS from fitting the unrestricted model will be small –

only due to “chance.” Said differently: if the hypothesis H is

false, than the reduction in RSS from fitting the unrestricted

model will be more than we would expect by chance.

We compare the residual sum of squares (RSS) for the full

model Y = Xβ +ε to the residual sum of squares (RSSH) for

the restricted model (with Aβ = 0).

Let µ = E[Y]. Under the full model, µ = Xβ ∈ R(X) ≡ Ω.

If H : Aβ = 0 is a testable hypothesis with A = MX, then

H : Aβ = 0 ⇔ H : MXβ = 0

⇔ H : Mµ = 0

⇔ H : µ ∈ R(X) ∩ N (M) ≡ ω.

(Recall: N (M) = {u : Mu = 0}) is the null space of M.)

Thus we have translated a hypothesis about β into a hypothesis

about µ = E[Y]. We can write ω as {µ : µ = Xβ,Aβ = 0}

or, equivalently, ω = {µ : µ = Xβ,Mµ = 0}. (see figure on

following page)
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Y

Ŷ = PΩY

e = (I− PΩ)Y

ŶH = PωY

Ŷ − ŶH = (PΩ − Pω)Y

Ω

ω
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Let Ŷ = PΩY and ŶH = PωY be the orthogonal projections

of Y onto Ω and ω. The RSS for the full model is

RSS = (Y − Ŷ)′(Y − Ŷ) = (Y − PΩY)′(Y − PΩY)

= ((I −PΩ)Y)′((I − PΩ)Y) = Y
′(I −PΩ)Y.

Similarly, the RSS for the restricted model (with µ ∈ ω) is

RSSH = (Y − ŶH)′(Y − ŶH) = Y
′(I − Pω)Y.

Therefore,

RSSH − RSS = Y
′(PΩ − Pω)Y.

Note: All of the above is linear algebra. We haven’t yet used

anything about the hypothesis H other than the fact that it

corresponds to a subspace ω.

Now, since µ ∈ Ω, we can continue:

RSS = Y
′(I −PΩ)Y = (Y − µ)′(I − PΩ)(Y − µ)

since (I − PΩ)µ = 0. Furthermore, if H is true then µ ∈ ω

and we have

RSSH = Y
′(I − Pω)Y = (Y − µ)′(I − Pω)(Y − µ).

and thus

RSSH − RSS = (Y − µ)′(PΩ − Pω)(Y − µ).
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13.3. Distribution of the F -Statistic when H is true

Definition: Let X1 and X2 be independent random variables

with X1 ∼ χ2
d1

and X2 ∼ χ2
d2

. Then the distribution of the

ratio

F =
X1/d1

X2/d2

is the F distribution with d1 numerator degrees of freedom (df)

and d2 denominator df and is denoted Fd1,d2
.

Theorem 13.3.1: If Y ∼ Nn(Xβ, σ2
I) and H : Aβ = 0 is

a testable hypothesis with rank(Aq×p) = q, then, when H is

true,

F =
(RSSH − RSS)/q

RSS/(n − r)
∼ Fq,n−r,

the F distribution with q and n − r degrees of freedom.

Proof: We just derived that

RSS/σ2 = (Y − µ)′(I − PΩ)(Y − µ)/σ2.

Similarly, if µ ∈ ω,

RSSH/σ2 = (Y − µ)′(I −Pω)(Y − µ)/σ2,

and hence

(RSSH − RSS)/σ2 = (Y − µ)′(PΩ −Pω)(Y − µ)/σ2.



13. HYPOTHESIS TESTING (Part I) 7

Because rank(I − PΩ) = n − r,

RSS/σ2 ∼ χ2
n−r.

Also

(RSSH − RSS)/σ2 ∼ χ2
q,

when the null hypothesis H : µ ∈ ω is true.

Now we have the following decomposition of χ2 variables:

Q1 = Q + Q2

where

Q2 ≡ RSS/σ2 ∼ χ2
n−r,

Q ≡ (RSSH − RSS)/σ2 ∼ χ2
q,

and, by addition of the degrees of freedom,

Q1 = RSSH/σ2 ∼ χ2
n−(r−q).

By Hogg & Craig Theorem (Lecture 6, page 8), Q1 − Q2 =

Q and Q2 are independent. Therefore the F ratio has the

distribution of a ratio of independent χ2 variables divided by

their df , which is the definition of the F distribution.
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13.4. Change in RSS

The following theorem gives a useful expression for the change

in residual sum of squares.

Theorem 13.4.1: If H : Aβ = 0 is a testable hypothesis, then

RSSH − RSS = (Aβ̂)′[A(X′
X)−A

′]−(Aβ̂).

To prove this we need a lemma:

Lemma: Let Ω = R(X) and ω = Ω ∩ N (M). Then

1. PΩ − Pω = Pω⊥∩Ω (Seber & Lee, B3.2).

2. ω⊥ ∩ Ω = R(PΩM
′) (Seber & Lee, B3.3).

3. If H : Aβ = 0 is a testable hypothesis,

PΩ − Pω = X(X′
X)−A

′[A(X′
X)−A

′]−A(X′
X)−X

′
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Proof of Part 3 of the Lemma, which says

PΩ − Pω = X(X′
X)−A

′[A(X′
X)−A

′]−A(X′
X)−X

′:

Parts 1 and 2 of the Lemma tell us that PΩ − Pω is equal to

PR(PΩM′).

For any matrix X, PR(X) = X(X′
X)−X

′ defines projection

onto R(X). In particular, PΩ = X(X′
X)−X

′, and for the

matrix PΩM
′

PR(PΩM′) = (PΩM
′)[(PΩM

′)′(PΩM
′)]−(PΩM

′)′

= PΩM
′[MPΩM

′]−MPΩ.

Using A = MX,

PΩM
′ = X(X′

X)−X
′
M

′ = X(X′
X)−A

′,

MPΩ = MX(X′
X)−X

′ = A(X′
X)−X

′,

MPΩM
′ = M(PΩM

′) = MX︸︷︷︸
A

(X′
X)−A

′ = A(X′
X)−A

′,

Hence

PR(PΩM′) = (PΩM
′)([MPΩM

′]−)(MPΩ)

= X(X′
X)−A

′[A(X′
X)−A

′]−A(X′
X)−X

′



13. HYPOTHESIS TESTING (Part I) 10

Proof of Theorem 13.4.1:

RSSH − RSS = Y
′(PΩ − Pω)Y

= Y
′
X(X′

X)−A
′[A(X′

X)−A
′]−A(X′

X)−X
′
Y

= β̂
′
A

′[A(X′
X)−A

′]−Aβ̂

= (Aβ̂)′[A(X′
X)−A

′]−(Aβ̂)

This result shows that large values of RSSH − RSS indicate

departures from H : Aβ = 0.

If Aβ = 0, then Aβ̂ will tend to be close to 0 and so RSSH −

RSS will tend to be small.

Note that this is just a quadratic form for the random vector

Aβ̂. Letting rank(A) = q, we can derive :

E[RSSH − RSS] = σ2q + (Aβ)′[A(X′
X)−A

′]−1(Aβ).

Therefore, when H : Aβ = 0 is true,

E[RSSH − RSS] = σ2q.

We form a test statistic by making a ratio:

RSSH − RSS

qσ̂2
=

(RSSH − RSS)/q

RSS/(n − r)
.

Under H , F will be approximately equal to 1. If H is not true

F will tend to be larger than 1.


