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16.1. Classical Linear Model Assumptions

A. E[Y] = Xβ

B. E[ε] = 0

C. cov(ε) = σ2
I

D. ε ∼ MV N

We will consider the effects on inference when a model is fit

with erroneous assumptions:

1. Underfitting the regression model.

2. Overfitting the regression model.

3. Mis-specifying the covariance matrix.

4. Non-normality.

Our goal is to understand the effects of erroneous assumptions.
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16.2. Bias Due to Underfitting

Suppose the true model is

Y = Xβ + Zη + ε, E[ε] = 0, cov(ε) = σ2
I,

but we fit the smaller model:

Y = Xβ + ε.

We can assume that the columns of Z are linearly independent

of the columns of X (linearly dependent columns add noth-

ing new to the model). Also assume a full rank model, i.e.,

rank(Xn×p) = p.

How will our estimates be affected?

Naive argument: I’m only interested in the parameters β, so

why bother estimating η?

Consider: if the smaller model is used,

E[β̂] = E[(X′
X)−1

X
′
Y]

= (X′
X)−1

X
′E[Y]

= (X′
X)−1

X
′(Xβ + Zη)

= β + (X′
X)−1

X
′
Zη

Therefore,

BIAS ≡ E[β̂] − β = (X′
X)−1

X
′
Zη.
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Response to naive argument: estimates of your parameters of

interest β will be biased if you ignore η.

Unless?

Unless the columns of X are orthogonal to the columns of Z.

The fitted values are also biased because they are based on

the projection of Y onto the column space of X instead of

the column space of (X,Z). Let PX = X(X′
X)−1

X
′ be the

projection operator onto the column space of X.

E[Ŷ] = E[PXY] = PX(Xβ + Zη) = Xβ + PXZη,

which is not the same as what we want, Xβ + Zη.
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Example: Fit

Y = β0 + β1x + ε

when the true model is

Y = β0 + β1x + β2x
2 + ε.

Then

(X′
X)−1 =

1
∑

(xi − x̄)2

( ∑

x2
i/n −x̄

−x̄ 1

)

and

X
′
Z =

(

1 . . . 1

x1 . . . xn

)





x2
1
...

x2
n



 =

( ∑

x2
i

∑

x3
i

)

.

The bias in β̂ is

(X′
X)−1

X
′
Zβ2 =

β2
∑

(xi − x̄)2

(

(
∑

x2
i )

2/n − x̄
∑

x3
i

−x̄
∑

x2
i +

∑

x3
i

)

.

Note that β̂1 is unbiased if x̄ = 0 and
∑

x3
i = 0.

Note also that the bias depends on β2. If β2 is small the bias

will be small.
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Example: Fit

Yij = µi + εij, (i = 1, 2; j = 1, . . . , ni),

when the true model is

Yij = µi + ηzij + εij,

i.e., we compare two groups, ignoring the covariate z.

In matrix form the true model is Y = Xβ + Zη + ε, or,


















Y11
...

Y1n1

Y21
...

Y2n2



















=



















1 0
... ...

1 0

0 1
... ...

0 1



















(

µ1

µ2

)

+



















z11

. . .

z1n1

z21

. . .

z2n2



















η +



















ε11

. . .

ε1n1

ε21

. . .

ε2n2



















.

Then the bias in (µ̂1, µ̂2) is

(X′
X)−1

X
′
Zη =

(

z̄1

z̄2

)

η.

Assuming η 6= 0, the group comparison µ̂1 − µ̂2 is unbiased if

and only if z̄1 = z̄2. i.e., the mean value of the covariate is the

same in the two groups.

Randomization: Suppose we randomly assign experimental

units to the two groups. Then z̄1 ≈ z̄2 for any covariate z,

as long as groups are fairly large. Thus, randomization elimi-

nates bias due to unfitted covariates.
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16.3. Effects of Underfitting on the Error Variance Estimate

The usual form for the covariance matrix of β̂ is still valid

(why?):

cov(β̂) = σ2(X′
X)−1.

This follows simply by calculating cov(β̂) = cov((X′
X)−1

X
′
Y)

The problem is the estimate of the error variance σ2 is biased.

E[RSS] = E[Y′(I −PX)Y]

= tr{(I − PX)σ2
I} + (Xβ + Zη)′(I −PX)(Xβ + Zη)

= σ2(n − p) + (Zη)′(I − PX)(Zη),

because (I − PX)X = 0. Therefore,

E[S2] =
E[RSS]

n − p
= σ2 +

η′
Z
′(I − PX)Zη

n − p
> σ2

The lesson is that underfitting leads to overestimation of the

error variance.

Recall from your regression class: precision variables.
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16.3. Effects of Overfitting

Suppose the true model is

Y = X1β1 + ε, E[ε] = 0, cov(ε) = σ2
I,

but we fit the model

E[Y] = Xβ = (X1,X2)

(

β1

β2

)

= X1β1 + X2β2,

i.e., we are fitting unnecessary terms in X2.

Consider: if the larger model is used,

E[β̂] = (X′
X)−1

X
′E[Y]

= (X′
X)−1

X
′
X1β1

= (X′
X)−1

X
′(X1,X2)

(

β1

0

)

=

(

β1

0

)

.

Therefore, β̂ is unbiased. In particular β̂1 is unbiased for β1

and β̂2 has mean 0, which is what we would hope.

Also, the fitted values Ŷ are unbiased because

E[Ŷ] = XE[β̂] = (X1,X2)

(

β1

0

)

= X1β1.
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Effects of overfitting on cov(β̂):

How is cov(β̂1) affected by fitting the unnecessary β̂2? We have

cov(β̂) = σ2(X′
X)−1

= σ2

(

X
′
1X1 X

′
1X2

X
′
2X1 X

′
2X2

)−1

= σ2

(

(X′
1X1)

−1 + FE
−1

F
′ −FE

−1

−E
−1

F
′

E
−1

)

where

F = (X′
1X1)

−1
X

′
1X2,

and

E = X
′
2X2 − X

′
2X1(X

′
1X1)

−1
X

′
1X2

= X
′
2(I − PR(X1))X2.

Therefore,

cov(β̂1) = σ2[(X′
1X1)

−1 + FE
−1

F
′],

compared with σ2(X′
1X1)

−1 which would result from fitting

the true model E[Y] = X1β1. It can be shown that FE
−1

F
′

is positive definite unless X
′
1X2 = 0 (Seber & Lee p. 231). If

X
′
1X2 6= 0, the variance of parameter estimates will be inflated

by overfitting. If X
′
1X2 = 0, then F = 0, so cov(β̂1) is not

affected.

So we haven’t hurt ourselves here if we add unnecessary covari-

ates that are orthogonal to the covariates of interest. Are we

done? No, because σ2 must be estimated. (Next page.)
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Effects of overfitting on the error variance estimate:

S2 remains unbiased:

E[RSS] = E[Y′(I − PX)Y]

= tr{(I − PX)σ2
I} + (E[Y])′(I − PX)(E[Y])

= tr{(I − PX)σ2
I} + (X1β1)

′(I − PX)(X1β1)

= σ2(n − p)

because (I − PX)X1 = 0.

The lesson is that overfitting does not introduce bias into re-

gression coefficient estimates, but it does in general inflate their

variances.
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16.4. Summary of Effects of Underfitting and Overfitting

Effect of Effect of

Underfitting Overfitting

β̂ biased unbiased

Ŷ biased unbiased

S2 biased upward unbiased

cov(β̂) still σ2(X′
X)−1 increased variance of

estimable functions


