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17.1. Effect of Mis-specified Covariance Matrix

Assume we have specified E[Y] = Xβ correctly but suppose

cov(ε) = σ2
V

when we assume

cov(ε) = σ2
I.

Is β̂ unbiased?

Yes, we saw this when we discussed Generalized Least Squares.

Full rank case: E(β̂) = E((X′
X)−1

X
′
Y) = (X′

X)−1
X

′E(Y) =

(X′
X)−1

X
′
Xβ = β.

When cov(ε) = σ2
V but we proceed under the assumption that

cov(ε) = σ2
I, we already know that we are (probably) using a

less efficient estimator. In addition, the covariance matrix of β̂

will not necessarily be equal to σ2(X′
X)−1. We have instead:



17. EFFECTS OF DEPARTURES FROM ASSUMPTIONS (Part II) 2

cov(β̂) = cov[(X′
X)−1

X
′
Y]

= (X′
X)−1

X
′σ2

VX(X′
X)−1

= σ2(X′
X)−1

X
′
VX(X′

X)−1.

Also,

E[S2] =
1

n − p
E[Y′(I − P)Y]

=
1

n − p
tr[σ2

V(I − P)]

=
σ2

n − p
tr[V(I − P)].

Therefore, in most cases, S2 is biased, i.e., E[S2] 6= σ2.
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17.2. Effect of Non-constant Variance on Two-sample t-test

(Scheffé, 10.2)

Model:

Yij = µi + εij, var(εij) = σ2

i , i = 1, 2; j = 1, . . . , ni.

The t-statistic used for testing µ1 − µ2 = 0 is

T =
Ȳ1 − Ȳ2

S(n−1

1
+ n−1

2
)1/2

,

where

S2 =
1

n − 2

∑

i

∑

j

(Yij − Ȳi)
2 =

(n1 − 1)s2

1
+ (n2 − 1)s2

2

n − 2
,

n = n1 + n2 and s2

i is the sample variance in the ith group.

Now, if σ2

1 = σ2

2 and εij is normally distributed, then

T ∼ tn−2 ≈ N(0, 1), for large n.

We now derive the approximate distribution of T when σ2

1
6= σ2

2
.
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For large n, S2 ≈ 1

n
(n1σ

2

1
+ n2σ

2

2
)

and T is approximately normally distributed with mean 0 and

var(T ) ≈ var(Ȳ1 − Ȳ2)
1

n
(n1σ2

1
+ n2σ2

2
)(n−1

1
+ n−1

2
)

=
n−1

1
σ2

1
+ n−1

2
σ2

2

1

n
(n1σ

2

1
+ n2σ

2

2
)(n−1

1
+ n−1

2
)
×

n1

σ2

2

n1

σ2

2

=

σ2

1

σ2

2

+ n1

n2

n1

n2

σ2

1

σ2

2

+ 1
.

When is var(T ) ≈ 1 for large n?

σ2

1

σ2
2

+
n1

n2

≈ n1

n2

σ2

1

σ2
2

+ 1

σ2

1

σ2

2

− 1 ≈ n1

n2

σ2

1

σ2

2

− n1

n2

=
n1

n2

(
σ2

1

σ2
2

− 1)

Answer: If either

1. σ2

1
= σ2

2
, i.e., equal variance assumption holds, OR

2. n1 = n2, i.e., sample sizes are equal, regardless of equality

of variances
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Effect on error rate of 95% CI for µ1 − µ2.

A the 95% CI for µ1 − µ2:

[Ȳ1− Ȳ2− t.025n−2
S(n−1

1
+n−1

2
)1/2, Ȳ1− Ȳ2 + t.025n−2

S(n−1

1
+n−1

2
)1/2].

The error rate of this CI is

P (µ1 − µ2 6∈ CI) = P (|T | > t.025n−2
)

≈ P (|N(0, v)| > t.025n−2
),

where v = (
σ2

1

σ2

2

+ n1

n2
)/(n1

n2

σ2

1

σ2

2

+ 1).

Some values of the error rate based on the above normal ap-

proximation are given in the table below. The error rate does

not deviate too far from the nominal value of 0.05 unless both

the sample sizes and the variances differ substantially between

groups.

σ2
1/σ

2
2

n1/n2
1

5

1

2
1 2 5

1 .05 .05 .05 .05 .05

2 .12 .08 .05 .029 .014

5 .22 .12 .05 .014 .002
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17.3. Effect of Serial Correlation on CI for a Mean

Assume we have a set of normally distributed observations from

the following model:

Yi = µ + εi, var(εi) = σ2, i = 1, . . . , n.

Assuming the observations are independent, we use the follow-

ing CI for µ: [Ȳ − t
α/2
n−1

s/
√

n, Ȳ + t
α/2
n−1

s/
√

n], with nominal

coverage probability 1 − α, where s is the sample variance.

This CI is based on the t statistic T ≡ Ȳ −µ
s/
√

n
∼ tn−1.

Now suppose that adjacent observations have correlation ρ and

all other pairs are uncorrelated:

corr(εi, εi−1) = ρ, i = 2, . . . , n,

and

corr(εi, εj) = 0, |i − j| > 1.

Then the variance of Ȳ is

var(Ȳ ) =
σ2

n

[

1 + 2ρ

(

1 − 1

n

)]

,

and

E[s2] = σ2

(

1 − 2ρ

n

)

.

Note that since
(

1 − 2ρ
n

)

< 1 when ρ > 0, this indicates a

tendency to underestimate the variance - anti-conservative in-

ference.
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Heuristically (substituting s2 ≈ σ2), when n is large we have

that T is approximately normal with mean 0 and variance

var(T ) ≈ var(Ȳ )

σ2/n
=

(σ2/n)[1 + 2ρ(1 − 1/n)]

σ2/n
≈ 1 + 2ρ.
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17.4. Effect of Non-normality

Suppose we have correctly specified the model

Y = Xβ + ε, E[ε] = 0, cov(ε) = σ2
I,

but suppose that ε is not necessarily MVN.

We have seen previously that, in the full rank case, β̂ is un-

biased, and cov(β̂) = σ2(X′
X)−1, without any distributional

assumptions. In fact, we proved β̂ that is the BLUE with-

out any distributional assumptions on ε except E[ε] = 0 and

cov(ε) = σ2
I.

Under some regularity conditions, the usual distributional prop-

erties of β̂ and the F test statistic still hold approximately for

large n. For example,

β̂ ≈ Np(β, σ2(X′
X)−1).

In addition, inferences based on F -tests using an F distribution

will be approximately correct.
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17.5. Effect of Non-normality on Inference for a Mean

Assume we have an independent sample from a distribution

with mean µ and variance σ2, i.e.,

Yi = µ + εi, var(εi) = σ2, i = 1, . . . , n.

If εi is normally distributed, then the one-sample t statistic

satisfies

T ≡ Ȳ − µ

s/
√

n
∼ tn−1 ≈ N(0, 1), for large n.

For large n, s2 ≈ σ2 and

T ≈ Ȳ − µ

σ/
√

n
≈ N(0, 1),

by the Central Limit Theorem, even if the errors are not normal.

The usual 95% CI for µ (assuming εi is normal) is

[Ȳ − t.025n−1
s/
√

n, Ȳ + t.025n−1
s/
√

n],

and the error rate of this CI is

P (µ 6∈ CI) = P (|T | > t.025n−1
).
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As an extreme example we consider the case of a Bernoulli

population with success probability p, i.e., P (Yi = 1) = p,

P (Yi = 0) = 1 − p. Note p is the mean of the distribution,

which is decidedly non-normal. The error rate for the CI is

given in the following table. It does not deviate greatly from

the nominal value of 0.05 unless n is fairly small and/or p is

fairly extreme.

Error rate for the CI for µ for a Bernoulli population with

success probability p:

p

n 0.1 0.2 0.3 0.4 0.5

10 0.350 0.114 0.039 0.059 0.021

20 0.124 0.079 0.053 0.072 0.041

50 0.121 0.062 0.053 0.044 0.065

100 0.068 0.058 0.050 0.052 0.057

200 0.073 0.059 0.056 0.051 0.056
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General comments on the effect of non-normality:

1. The effect of non-normality on the type I error rate of F-

tests depends more critically on the kurtosis of the dis-

tribution (heaviness of the tails) rather than the skewness.

(On the other hand, beware of one-sided t-tests with skewed

data.)

2. In ANOVA, the effect of non-normality is less severe in

balanced designs (see Seber & Lee §9.5.2).


