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18.1. Models

“All models are wrong, but some are useful.”

George E. P. Box (1979)

• All models are “wrong” in the sense of being a simplified

representations of some reality.

• Some models are more wrong than others.

– Let Y be the length of a string with a weight attached

to the end. Let w be the weight of the weight.

E[Y |w] = β0 + β1w is a pretty accurate model.

– Contrast this with a typical model used in biostatistics

or epidemiology. It’s extraordinarily rare to have this

kind of mechanistic justification for a model.

• “But some are useful.” Linear models can be extremely use-

ful for quantifying the association between variables, even

though we don’t believe the model.

• It’s extremely important to interpret a model appropriately

and avoid over-interpreting a model.
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18.2. Example #1

Q: Does smoking affect lung function in children who smoke?

• Lung function (Y ):

– Forced expiratory volume in one second (FEV1)

∗ FEV1 is the volume exhaled during the first second

of a forced expiratory maneuver started from the

level of total lung capacity.

∗ Here, we use Y = log(FEV1) is a surrogate for

“lung function.”

∗ Higher log(FEV1) denotes better lung function.

• Smoking (x):

– x = 1 for children who say they smoke.

– x = 0 for children who say they do not smoke.

• Age (w):

– Age range=(8,18) years.
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Suppose one models log(FEV1) = Y versus smoking status

(x) for a random sample of children and obtains the following

results (with estimated standard errors):

Ê[Y | x] = 1.06︸︷︷︸

(0.013)

+ 0.102︸ ︷︷ ︸

(0.033)

x.

Q: What is the interpretation of the estimated coefficient for

smoking status (x)?

Suppose one instead models Y versus x and age (w) and obtains

the following results:

Ê[Y | x, w] = 0.352︸ ︷︷ ︸

(0.054)

− 0.05︸︷︷︸

(0.030)

x + 0.063︸ ︷︷ ︸

(0.005)

w.

Q: What is the interpretation of the estimated coefficient for

smoking status now?

Q: Can you explain such diametrically opposed results for the

two models?
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18.3 Example #2

Q: Is there sexual discrimination with regard to faculty salaries

at the University of Washington?

• 1995 Salary (Y = log(salary)):

• Gender (x):

– x = 1 male,

– x = 0 female.

• Rank (w):

– x = 1 full professor,

– x = 0 assistant or associate professor.

• Confounders (skill, experience, productivity, training) (c):

1. Fit model 1,

Ê[Y | x] = β̂0 + β̂1x

Q: What is the interpretation of β̂1?

2. Fit model 1 + confounders, c,

Ê[Y | x, c] = ϑ̂0 + ϑ̂1x + ϑ̂
′

2c

Q: What is the interpretation of ϑ̂1?

3. Fit model 2 + rank w,

Ê[Y | x, w] = γ̂0 + γ̂1x + γ̂2w + γ̂ ′
3c

Q: Which model do you prefer for investigating sexual discrim-

ination in salary?
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18.4 Linear Models in Biostatistics

Consider the classical linear model assumptions and a typical

biostatistics or epidemiological data set. It’s generally a good

thing to accurately model the mean: E[Y ] = Xβ. However,

we do not believe the model in the same way as we believe, for

example, the model for the length of a string holding a weight.

We commonly use models to measure an association of interest,

while accounting for confounding variables and other important

covariates (precision variables).

Thought experiment: Suppose I could fit my model to the entire

population. Then I could know β for that population. However,

I can only sample from the population, and so I get an estimate

β̂ of β.
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• E[Y] = Xβ is a convenient way to measure the association

I’m interested in, but I don’t believe the model.

• Since I have a random sample, I am comfortable assuming

my errors are uncorrelated but not necessarily homoscedas-

tic (equal variance). cov(Y) = cov(ε) = D, for some diag-

onal matrix D

• I don’t believe the normality assumption but if my sample

is large I don’t worry about this part.

We need methods for inference about β that are robust to the

linear model assumptions that I don’t believe.

Some possibilities:

• sandwich estimator

• bootstrapping

• permutation test
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18.5 Sandwich Estimator (BIOST 570)

From the formula for β̂ we can calculate cov(β̂):

β̂ = (X′
X)−1

X
′
Y

cov(β̂) = cov((X′
X)−1

X
′
Y)

= (X′
X)−1

X
′cov(Y)X(X′

X)−1

If we assume cov(Y) = σ2
I things simplify here a lot. But

without making this assumption we are left with

cov(β̂) = (X′
X)−1

X
′
DX(X′

X)−1

The idea of the sandwich estimator is to estimate cov(β̂) by

estimating D.
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18.6 Bootstrapping

IDEA: We have an estimate β̂ of β. The question is: What is

the sampling distribution of β̂?

Conceptually, we could repeat our random sampling of n in-

dividuals from the population J times and fit the model each

time. Then we would get (β̂1, . . . , β̂J) and we could use this

to estimate the sampling distribution of β̂.

But we don’t have the opportunity to do this.

If our sample is large enough, we pretend the sample is our

population in bootstrapping. Sample with replacement from

the subjects in our sample, taking a sample of size n each time.

This gives (β̂
∗

1, . . . , β̂
∗

J) . Use this empirical distribution to

estimate the sampling distribution of β̂.
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Why is the sampling done with replacement?

1. theoretical reason: We need independent sampling.

2. practical reason: Otherwise we would just get the same

sample every time.
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18.7 Permutation test

Suppose we’re using a model to query a possible association

between predictors X and a response Y.

Thought experiment: if there is no association between my re-

sponse and my predictors, then the data I observe was just as

likely as a dataset where the y′s are scrambled (permuted).

NOTE: Permutation testing is a testing method, confidence in-

tervals are hard to come by.

ISSUE: What is the null hypothesis being tested? Is it the null

hypothesis of interest?
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18.8 Linear regression with heteroscedasticity

Consider simple linear regression Yi = β0+β1xi+εi. cov(εi, εj) =

0 for i 6= j and var(εi) ≡ σ2
i = αi + γxi. γ and the αi are

unknown nuisance parameters. Without loss of generality, as-

sume
∑

i xi = 0. Also assume α′
x = 0 (note this covers the

case αi = α). Let β̂ be the ordinary least squares estimate of

β = (β0, β1)
′.

We have seen that β̂ is unbiased. For the variance of β̂ we need

to calculate (X′
X)−1

X
′
VX(X′

X)−1

Notation: Let Sxx =
∑

i x
2
i and Sxy =

∑

i xiYi

Then X
′
X =

(
n 0

0 Sxx

)

, (X′
X)−1 =

(
1
n

0

0 1
Sxx

)

, and X
′
Y =

(
nȳ

Sxy

)

. We need one more piece: X
′
VX =
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So we have var(β̂) =
(

1
n

0

0 1
Sxx

)( ∑
αi γ

∑
x2

i

γ
∑

x2
i

∑
αix

2
i + γ

∑

i x
3
i

)(
1
n

0

0 1
Sxx

)

=

( ∑
αi/n

2 γ/n

γ/n (
∑

αix
2
i + γ

∑

i x
3
i )/S

2
xx

)

In particular, var(β̂1) = (
∑

αix
2
i + γ

∑

i x
3
i )/S

2
xx

Now, suppose we assume the errors have constant variance, cal-

culate the ordinary least squares β̂, and proceed to estimate

σ̂2 =
1

n − 2
(Y −Xβ̂)′(Y −Xβ̂)

This is a consistent estimator of the average variance

lim
n→∞

(σ2
i )/n = lim

n→∞

∑n
i=1(αi + γxi)

n
= ᾱ

(assuming such a limit exists).

So if we make the false assumption of a common variance, the

estimated variance of β̂ that will be used is:

v̂ar(β̂) = σ̂2(X′
X)−1 ≈ ᾱ

(
1/n2 0

0 1/Sxx

)

and in particular v̂ar(β̂1) = ᾱ
Sxx

.

In truth, the variance of β̂1 is (
∑

αix
2
i + γ

∑

i x
3
i )/S

2
xx.

When will we be using the right variance in making inference

about β1?
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We need the following condition to hold:

ᾱ

Sxx

=
(
∑

αix
2
i + γ

∑

i x
3
i )

S2
xx

,

i.e.,

ᾱ =
(
∑

αix
2
i + γ

∑

i x
3
i )

Sxx

.

This will be true if the αi’s are constant and either γ = 0 or
∑

i x
3
i = 0.

If the αi’s are constant and γ = 0 we have constant variance

and we’re not actually making any erroneous assumption.

If the αi’s are constant and
∑

i x
3
i = 0 we have x′

is with 0

skewness. That is, we can get away with the OLS estimate even

with this kind of heteroscedasticity if the x′
is are symmetric.

The requirement for the x′
is to be unskewed is analogous to the

balanced samples size requirement we saw in the two-sample

t-test example in Lecture 17.
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What are the implications for a permutation test of the signifi-

cance of β̂1?

If we permute the Y ′
i s randomly with respect to the x′

is, then

var(Y ∗
i |xi) = var(Y ∗

i ) is just the marginal variance of the Y ′
i s :

ᾱ + γx̄ = ᾱ.

By permuting the Y ′
i s, we “break” the mean variance relation-

ship.

So var(β̂∗
1) = ᾱ

Sxx

Therefore, even if the true β1 = 0, the permutation test will

“have power” if the variance of the β̂∗
1 is less than the variance

of β̂1.:
ᾱ

Sxx

<

∑
αix

2
i + γ

∑

i x
3
i

S2
xx

,

equivalently

ᾱ <

∑
αix

2
i + γ

∑

i x
3
i

Sxx

.

If αi = ᾱ this condition becomes:

ᾱ <
(ᾱ

∑
x2

i + γ
∑

i x
3
i )

Sxx

= ᾱ +
γ

∑

i x
3
i

Sxx

, .

or 0 < γ
∑

x3
i . Therefore, if γ and

∑
x3

i have the same sign,

then the variance of the β̂∗
1 is less than the variance of β̂1


