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Lecture 1 Review:

Linear models have the form (in matrix notation)

Y = Xβ + ε,

where Yn×1 response vector and Xn×p is the model matrix (or “de-

sign matrix”) with one row for every subject and one column for every

regression parameter. βp×1 is the vector of unknown regression param-

eters and εn×1 is mean zero random error vector. We have

E[Y|X] =

p−1
∑

j=0

βjxj .

• E[Y|X] is a linear combination of the xj (j = 0, . . . , p − 1),

• E[Y|X] ∈ span(x0,x1, . . . ,xp−1) ≡ Ω,

This class of models includes:

1. Regression models,

2. Anova models,

3. Ancova models.

The theory of linear models requires understanding basic facts and

results in linear algebra and matrix analysis. We review these in this
lecture. There may be bits and pieces you are not familiar with, which

is fine, learn it now. If this is all new to you, you do not have the

prerequisite for this class.
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Notation and Elementary Properties:

1. Matrix: an m×n matrix with elements aij is denoted A = (aij)m×n.

2. Vector: a vector of length n is denoted a = (ai)n. If all elements

equal 1 it is denoted 1n. We will stick to the convention that a

vector is a column vector.

3. Diagonal Matrix:

diag(a1, . . . , an) ≡











a1 0 · · · 0

0 a2 · · · 0
...

... . . . 0

0 · · · 0 an











.

4. Identity Matrix: In×n ≡ diag(1n).

5. Matrix Transpose: if A = (aij)m×n, then A′ is an n × m matrix

where a′
ij = aji.

6. If A = A′ then A is symmetric.

7. Matrix Sum: if A = (aij)m×n and B = (bij)m×n,

A + B = (aij + bij)m×n.

Matrix sums satisfy

(A + B)′ = A′ + B′.
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8. Matrix Product: if A = (aij)m×n and B = (bij)n×p, then

AB = (cij)m×p, cij =
∑

k

aikbkj .

Matrix products satisfy

(AB)′ = B′A′.

not A′B′!

Proof: (just think about how it works)

















...

ai1 · · · ain
...











b1j

· · · ... · · ·
bnj















′

=







...

bj1 · · · bjn
...











a1i

· · · ... · · ·
a1i



 .

9. Matrix Trace: Let A = (aij)m×n. The trace of A is the sum of the

diagonal elements,

tr(A) ≡
∑

i

aii,

where the sum is over i ≤ min(m,n). If A = (aij)m×n and B =
(bij)m×n, then

tr(A + B) = tr(A) + tr(B).

If A and B are square matrices, then

tr(AB) = tr(BA).

Even though AB 6= BA.
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SOME COMMENTS

When matrices are the right size, we can add and subtract them.

As long as matrices have the same size, this works pretty much

like adding and subtracting real numbers.

When matrices have the right size, we can multiply them. Some-

times this is like multiplying numbers, but sometimes it is dif-

ferent.

Like real numbers, multiplication has the associative property:

(AB)C = A(BC). Because of this, it is o.k. to just write

ABC.

Multiplication is not commutative. If you have AB, this is not

the same as BA, which may not even be defined.

You cannot “cancel out” matrices like you can real numbers.

If you have an equation AB = AC, you cannot in general

conclude that B = C.
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Linear Independence, Range, Rank, and Null Space:

1. Linear Independence: vectors a1, a2, . . . , an are linearly in-

dependent if
∑

i ciai 6= 0 unless ci = 0 for all i.

2. Range (Column Space): R(A) ≡ the linear space spanned

by the columns of A.

3. Rank: rank(A) ≡ r(A) ≡ the number of linearly inde-

pendent columns of A (i.e., the dimension of R(A)), or,

equivalently, the number of linearly independent rows of

A.

Examples:

rank

(

1 2

1 2

)

= 1,

R
(

1 2

1 2

)

= {c( 1

1
) : −∞ < c < ∞},

rank

(

1 1

1 2

)

= 2.

COMMENTARY: Linear independence and related notions

(e.g., rank) are deep and important concepts.

4. Decreasing property of rank (Seber & Lee A2.1):

rank(AB) ≤ min{rank(A), rank(B)}.
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5. Null Space: N (A) ≡ {x : Ax = 0}. The nullity of A is

the dimension of N (A). We have

rank(A) + nullity(A) = n,

the number of columns of A (Seber & Lee A2.3).

6. r(A) = r(A′) = r(A′A) = r(AA′) (Seber & Lee A2.4).

Matrix Inverse:

1. Definition: An n × n matrix A is invertible (or non-

singular ) if there is a matrix A−1 such that

AA−1 = A−1A = In×n.

A (n × n) is invertible if and only if rank(A) = n.

2. Inverse of Product: (AB)−1 = B−1A−1 if A and B are

invertible. (Easy to prove: multiply AB by B−1A−1 on

the left or right)

Generalized Inverses:

1. Definition: Let A be an m × n matrix. A generalized

inverse of A is any matrix G such that AGA = A.

2. Generalized inverses always exist. Generalized inverses are

not unique, except for square, non-singular matrices.

3. Notation: Write A− for a generalized inverse of A.
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Vectors: Inner Product, Length, and Orthogonality:

1. Inner product: a′b =
∑

i aibi, where a = (ai), b = (bi) are

vectors with the same length.

2. Vector norm (length): ||a|| =
√

a′a.

3. Orthogonal vectors: a = (ai) and b = (bi) are orthogonal

if a′b = 0.

4. Orthogonal matrix: A is orthogonal if its columns are or-

thogonal. If A is orthogonal, A′A is diagonal. A square

matrix A is orthonormal if its columns are orthogonal vec-

tors of length 1, so that A−1 = A′. I may be sloppy and

use “orthogonal” when I mean “orthonormal.”

Determinants:

Definition (recursive): for a square matrix A, |A| ≡ ∑

i aijAij,

where the cofactor Aij = (−1)i+j|Mij|, and Mij is the matrix

obtained by deleting the ith row and jth column from A.

Properties of Determinants:

1.

∣

∣

∣

∣

(

a b

c d

)∣

∣

∣

∣

= ad − bc.

2. |A| = 0, if and only if A is singular.

3. |diag(a1, . . . , an)| =
∏

i ai.

4. |AB| = |A| · |B|.

5.

∣

∣

∣

∣

(

A B

0 C

)∣

∣

∣

∣

= |A| · |C|.

Proof: by induction on the order of A
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Eigenvalues:

Definition: If Ax = λx where x 6= 0, then λ is an eigenvalue

of A and x is a corresponding eigenvector.

Properties: For any symmetric matrix A with eigenvalues

λ1, . . . , λn,

1. (Spectral Theorem–a.k.a. Principal Axis Theorem) For any

symmetric matrix A there is an orthonormal matrix T such

that:

T′AT = Λ = diag(λ1, . . . , λn).

Terminology: T “diagonalizes” A.

2. r(A) = the number of non-zero λi

Proof: r(A) = r(ATT′) ≤ r(AT) ≤ r(A).

Therefore, r(A) = r(AT).

Similarly, r(AT) = r(TT′AT) ≤ r(T′AT) ≤ r(AT).

So r(T′AT) = r(AT) = r(A).

But r(T′AT) = r(Λ).

3. tr(A) =
∑

i λi.

Proof: tr(A) = tr(ATT′) = tr(T′AT) = tr(Λ) =
∑

i λi.

4. |A| =
∏

i λi.
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Positive Definite and Semidefinite Matrices:

Definition: A symmetric matrix A is called positive semidefi-

nite (p.s.d.) if x′Ax ≥ 0 for all non-zero x.

Properties of a p.s.d matrix A:

1. The diagonal elements aii are all non-negative.

Proof: Let x = (1, 0, . . . , 0)′. Then 0 ≤ x′Ax = a11.

Similarly for the other aii.

2. All eigenvalues of A are nonnegative.

Proof: Let y = (1, 0, . . . , 0)′ and x = Ty (where T is the

orthonormal matrix that diagonalizes A). Then

0 ≤ x′Ax = y′T′ATy = y′Λy = λ1.

Similarly for the other λi.

3. tr(A) ≥ 0. Follows from 1 above, since trace is the sum

of the aii; or follows from 2 above because the trace is the

sum of the eigenvalues.
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Definition: A symmetric matrix A is called positive definite

(p.d.) if x′Ax > 0 for all non-zero x.

Properties of a p.d matrix A:

1. All diagonal elements and all eigenvalues of A are positive.

2. tr(A) > 0.

3. |A| > 0.

4. There is a nonsingular R such that A = RR′ (necessary

and sufficient for A to be p.d., Seber &Lee A4.2).

5. A−1 is p.d.

Proof: A−1 = (RR′)−1 = (R′)−1R−1 = SS′, where

S = (R−1)′ is non-singular.

NOTE: We will sometimes note that A is p.s.d. by writing

A ≥ 0 and note that A is p.d. by writing A > 0.
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Idempotent and Projection Matrices:

Definitions: A matrix P is idempotent if P2 = P. A symmetric

idempotent matrix is called a projection matrix.

Facts about projection matrices P:

1. Let P be a symmetric matrix. P is idempotent and of rank

r if and only if it has r eigenvalues equal to 1 and n − r

eigenvalues equal to zero. (Seber & Lee A6.1)

Proof: (⇒) Suppose P2 = P and rank(P) = r. Then

TΛT′ = P = P2 = TΛT′TΛT′ = TΛ2T′ ⇒ Λ = Λ2.

Λ is a diagonal matrix ⇒ λi = 0 or 1 (i = 1, 2, . . . , n). By

Seber & Lee A.2.6, rank(Λ)=rank(P) = r.

(⇐) Suppose λ1 = λ2 = · · · = λr = 1 and λr+1 = λr+2 =

· · · = λn = 0. Then there exists an orthogonal matrix T

such that T′PT = diag(1r, 0n−r) = Λ.

P = TΛT′, P2 = TΛT′TΛT′ = TΛ2T′ = P, and

rank(P)= rank(Λ) = r.

2. Projection matrices have tr(P) = rank(P).

3. Projection matrices are positive semidefinite.

Proof: x′Px = x′P2x = (Px)′(Px) = ||P|| ≥ 0.
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More Projections:

For two vectors x and y, the projection of y onto x is

Projx(y) =
x′y

x′x
x.

If V is a vector space and Ω is a subspace of V , then ∃ two

vectors, w1, w2 ∈ V such that

1. y = w1 + w2 ∀ y ∈ V ,

2. w1 ∈ Ω and w2 ∈ Ω⊥.

3. If ‖y − w1‖ ≤ ‖y − x‖ for any x ∈ Ω, then w1 is the

projection of y onto Ω.

� The transformation that takes y onto w1 is a linear

transformation.

� The matrix P that takes y onto w1 (i.e., Py=w1) is

a projection matrix. P projects y onto the space spanned

by the column vectors of P.

� I − P is a projection operator onto Ω⊥.


