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20.1. Balanced One-Way Classification

Cell means parametrization:

Yij = µi + εij, i = 1, . . . , I ; j = 1, . . . , J,

εij ∼ N(0, σ2), independent.

In matrix form, Y = Xβ + ε, or





Y1
...

YI



 =











1J 0J · · · 0J

0J 1J · · · 0J
... ... . . . ...

0J 0J · · · 1J















µ1
...

µI



 +





ε1
...

εI



 ,

where Y
′
i = (Yi1, . . . , YiJ), ε′

i = (εi1, . . . , εiJ).

The least-squares estimates are:

µ̂i = Ȳi.

So the RSS is

RSS =
∑

i

∑

j

ε̂2
ij =

∑

i

∑

j

(Yij − Ȳi)
2.
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Alternative Parametrization of the Model:

Yij = µ + αi + εij.

µ is interpreted as the overall mean (“grand mean”), αi is in-

terpreted as the difference between the mean of group i and the

overall mean.

Are the αi estimable with this parametrization? No.

Note that αi is like µi − µ̄ from the previous parameterization.

Therefore,
∑I

i=1 αi = 0 is a natural constraint because

I
∑

i=1

αi =
I

∑

i=1

(µi − µ̄) = 0

is a natural constraint. This is an identifiability constraint for

the model.

The unique least-squares estimates satisfying
∑

αi = 0 can be

derived by the following trickery:

Rewrite εij as:

εij = ε̄·· + (ε̄i· − ε̄··) + (εij − ε̄i·).

where ε̄i· = 1
J

∑

j εij and ε̄·· = 1
IJ

∑

i

∑

j εij.

Square both sides of this expression and sum over all i and j.

The cross-product terms are 0.
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I
∑

i=1

J
∑

j=1

ε2
ij =

I
∑

i=1

J
∑

j=1

ε̄2
··+

I
∑

i=1

J
∑

j=1

(ε̄i·−ε̄··)
2+

I
∑

i=1

J
∑

j=1

(εij−ε̄i·)
2.

Now make some substitutions:

εij = Yij − µ − αi

ε̄i· = Ȳi· − µ − αi

ε̄·· = Ȳ·· − µ −
1

I

∑

αi = Ȳ·· − µ

I
∑

i=1

J
∑

j=1

(Yij − µ − αi)
2 =

I
∑

i=1

J
∑

j=1

(Ȳ·· − µ)2 +
I

∑

i=1

J
∑

j=1

(Ȳi· − Ȳ·· − αi)
2

+

I
∑

i=1

J
∑

j=1

(Yij − Ȳi·)
2.

What is the left hand side? RSS

This is minimized by the least-squares estimates:

µ̂ = Ȳ·· and α̂i = Ȳi· − Ȳ··.
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20.3. F-test for Group Differences

Test H : µ1 = µ2 = · · · = µI , i.e.,

H :











1 0 · · · 0 −1

0 1 · · · 0 −1
... ... . . . ... ...

0 0 · · · 1 −1















µ1
...

µI



 = 0.

The F statistic is

F =
(RSSH − RSS)/(I − 1)

RSS/[IJ − I ]
,

where

RSSH =
∑

i

∑

j

(Yij − Ȳ··)
2.

We have a similar algebraic identity:
∑

i

∑

j

(Yij − Ȳ··)
2 =

∑

i

∑

j

(Yij − Ȳi·)
2 +

∑

i

∑

j

(Ȳi· − Ȳ··)
2

=
∑

i

∑

j

(Yij − Ȳi·)
2 + J

∑

i

(Ȳi· − Ȳ··)
2

RSSH = RSS+J
∑

i

(Ȳi· − Ȳ··)
2

The F statistic becomes

F =
J

∑

i(Ȳi· − Ȳ··)
2/(I − 1)

∑

i

∑

j(Yij − Ȳi·)2/[IJ − I ]
∼ FI−1,I(J−1).
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The results of a one-way ANOVA are often displayed in an
ANOVA table:
Source df SS MS F

Groups I − 1 SS = J
∑

i(Ȳi· − Ȳ··)
2

MS = SSA

I−1
MSA

MSE

Error I(J − 1) SSE =
∑

i

∑

j(Yij − Ȳi·)
2

MSE = SSE

I(J−1)

Total IJ − 1
∑

i

∑

j(Yij − Ȳ··)
2
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20.4. Example

Compare the breaking strength of steel plates for 5 brands of

cars:

Country Brand Mean

U.S. GM(1) µ1

U.S. GM(2) µ2

U.S. Ford µ3

Japan Toyota µ4

Japan Honda µ5

Data are measurements on J = 4 samples per brand. Suppose

we get

Source df SS MS F p

Groups 4 10.24 2.56 2.56/0.34=7.53 .0016
Error 15 5.10 0.34
Total 19 15.34

Using the F-test, do we reject H : µ1 = µ2 = · · · = µ5? Yes,

we reject at the 0.05 and 0.01 level.
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20.5. Orthogonal Contrasts

Some more algebra:

REG–SS = (PY)′(PY) = Y
′
PY

= Y
′
X(X′

X)−1
X

′
Y

= Y
′
X[(X′

X)−1(X′
X)](X′

X)−1
X

′
Y

= β̂
′
(X′

X)β̂

= β̂
′
A

′
A

′−1(X′
X)A−1

Aβ̂

= (Aβ̂)′[A′−1(X′
X)A−1](Aβ̂)

= (Aβ̂)′[A(X′
X)−1

A
′]−1(Aβ̂)

This decomposition is general, but we now apply it to one-way

ANOVA using a matrix A whose rows are pairwise orthogonal

(so that A
′
A is diagonal). With the cell-means parameteriza-

tion, (X′
X)−1 = (1/J)I. Then

REG–SS = (Aβ̂)′[A(X′
X)−1

A
′]−1(Aβ̂)

= (Aβ̂)′[AA
′/J ]−1(Aβ̂)

=
∑

(a′
iβ̂)2/[a′

iai/J ]

In one-way ANOVA, we sometimes use orthogonal contrasts

to further decompose the regression sums of squares.
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20.6. Example Continued

Consider the following four orthogonal contrasts of the cell

means. (There are four degrees of freedom, since the fifth degree

of freedom is for the overall mean). We partition the “Groups”

Sum-Of-Squares into four smaller Sums-of-Squares correspond-

ing to these four orthogonal contrasts:

U.S. vs. Japanese: a
′
1β = (1

3
, 1

3
, 1

3
,−1

2
,−1

2
)β

GM vs. Ford: a
′
2β = (1

2
, 1

2
,−1, 0, 0)β

GM(1) vs. GM(2): a
′
3β = (1,−1, 0, 0, 0)β

Toyota vs. Honda: a
′
4β = (0, 0, 0, 1,−1)β

Note that a
′
iaj = 0, i 6= j.

Source df SS MS F p

Groups: 4 10.24 2.56 7.53 .0016

U.S. vs. Japanese 1 4.39 4.39 12.91 .0027

GM vs. Ford 1 1.69 1.69 4.97 .041

GM(1) vs. GM(2) 1 2.64 2.64 7.76 .014

Toyota vs. Honda 1 1.52 1.52 4.47 .052

Error 15 5.10 0.331
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20.7. Unbalanced Case

Suppose there are different numbers of observations per group:

Yij = µ + αi + εij, i = 1, . . . , I ; j = 1, . . . , Ji.

Most of the same tricks from before still work. Rewrite εij as:

εij = ε̄·· + (ε̄i· − ε̄··) + (εij − ε̄i·).

Square both sides of this expression and sum over all i and j.

The cross-product terms are still 0.

I
∑

i=1

Ji
∑

j=1

ε2
ij =

I
∑

i=1

Ji
∑

j=1

ε̄2
··+

I
∑

i=1

Ji
∑

j=1

(ε̄i·−ε̄··)
2+

I
∑

i=1

Ji
∑

j=1

(εij−ε̄i·)
2.

Some substitutions are the same as before:

εij = Yij − µ − αi

ε̄i· = Ȳi· − µ − αi

But what about ε̄··? It is NOT the average of the ε̄i·.

ε̄·· =
1

n

I
∑

i=1

Ji
∑

j=1

εij =
1

n

I
∑

i=1

Jiε̄i· =
1

n

I
∑

i=1

Ji(Ȳi· − µ − αi)

= −µ +
1

n

I
∑

i=1

Ji(Ȳi· − αi) = Ȳ·· − µ −
1

n

I
∑

i=1

Jiαi

To continue as we did before, the convenient identifiability con-

straint is now
∑I

i=1 Jiαi = 0. So then ε̄·· = Ȳ··−µ and the rest

works out as before.
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I
∑

i=1

Ji
∑

j=1

(Yij − µ − αi)
2 =

I
∑

i=1

Ji
∑

j=1

(Ȳ·· − µ)2

+
I

∑

i=1

Ji
∑

j=1

(Ȳi· − Ȳ·· − αi)
2

+

I
∑

i=1

Ji
∑

j=1

(Yij − Ȳi·)
2.

This shows that µ̂ = Ȳ·· and α̂i = Ȳi· − Ȳ·· when we use the

identifiability constraint
∑I

i=1 Jiαi = 0.

Then the F statistic for testing group differences is now

F =

∑

i Ji(Ȳi· − Ȳ··)
2/(I − 1)

∑

i

∑

j(Yij − Ȳi·)2/(n − I)
∼ FI−1,n−I.

Thus the numerator of the F -statistic is still the “group sum of

squares” (but now appropriately weighted).

Imbalance doesn’t complicate things too much in one-way ANOVA.

Not so for two-way ANOVA, etc.


