24. SOME TRADITIONAL DIAGNOSTICS AND HAT MATRIX FUN 1

Some traditional diagnostics
e residual analysis

e case analysis

Plots of Residuals

e Plot & vs. Y
— assess for heteroscedasticity
— assess for trends indicating poor model fit
idealized examples on overhead

NOTE: Residual plots can exaggerate trends. This can be
a good thing, but scale is important.

[SSUE: Using the data to develop the model can lead to
overfitting and over-confident inference.

e Normal probability plot or QQ plot
—assess for deviations from normality
idealized examples on overhead

[SSUE: The normality assumption is most important with
small samples. Unfortunately, this is when QQ plots are
the most difficult to interpret.

EXAMPLE: The sets of figures A, B, C, show six samples of
size 25 from a normal distribution, double-exponential dis-

tribution (heavier tails), and Cauchy distribution (heaviest
tails). Which is which?

A=normal; B-double exponential; C=Cauchy

NOTE: Both of the diagnostics above work regardless of the
number of predictors.



A . v,
& VS

{c) tooks good

- A
A .
‘6 e o
‘ o]
[} [
° - o] ° o o
o ©
o [
A o o ©° A
Yy
o] o] y [s] o o
o o o o] o
[o]
[«
(a} Biased errors (b} Non—consia_ntvariance
8
(o] o [ o]
[+
o] o ° O
o © o © °
) A
© ° o y
© [»}
(o] [e] °

A
/e\ é
o
°<
o
) =]
° s °
[
°
o
(8) Normal ®) Long or hwm'ed
A °
°
o)
° s
o
o
{c) Skewed right
Normal probability plots.

R Dlots



o0

(-

]




24. SOME TRADITIONAL DIAGNOSTICS AND HAT MATRIX FUN 2

Fun with the Hat Matrix

H = X(X'X)" X'

(the matrix formerly known as P).
We know: H=H' = H?

We know: He = 0, i.e. Zj hije; =0 = Zj hji€;

Since H2 = H = HH,

hi = h” = Zj hijhﬂ = Zj hgj Z 0

We know: trace(H) = rank(H) = p = rank(X) so Y h; = p
and since h; > 0 the “average” value of h; is p/n.

Cases ¢ with h; > 2p/n are sometimes labeled “high leverage”
cases (to be explained),

Writing

X =

Xn

then we can write h;; = x5(X'X) " !x;.
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We may want to identify:

Leverage cases - remote in the predictor space. May or may

not influence the parameter estimates but may influence other

summaries such as R? or 2.

Influence cases - have a noticeable effect on the estimated re-
gression coeflicients.

If all we ever did was simple linear regression we might not
need special ways to identify leverage cases or influence cases.
However, these cases can be difficult to identify with higher-
dimensional models.

idealized examples on overhead
NEXT:
e h; is a measure of leverage

e For influence, we want to compare 3 with 3 (7), the param-

eter estimates from fitting the model without case 7.
B and B(i) are related via H.

ALSO:

e Studentized residuals, a better residual for diagnostics.

e RSS and RSS(7) are also related via H.



‘V\Qh}(ﬁn Kal Observa by~

. DST 515, Lecture 8 D : )



. )ST 515, Lecture 8

H'ﬁ W leve a s

Q‘.?)ée,(\\/ag;ﬁ‘c,.j
o
o
o .
o o
%o
® 0 o
r T |




