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Lecture 2 Review:

Elementary Matrix Algebra Review

e rank, trace, transpose, determinants, orthogonality, etc.,
e linear independence, range (column) space, null space,
e spectral theorem /principal axis theorem,

e idempotent matrices, projection matrices, positive definite and
positive semi-definite matrices.

RANDOM VECTORS

Definitions:

1. A random vector is a vector of random variables

X1

X = :
X

2. The mean or expectation of X is defined as

E[X4]

EX]=|
E[X)]

3. A random matriz is a matrix of random variables Z = (Z;;). Its
expectation is given by E[Z] = (E[Z;;]).
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Properties:

1. A constant vector a and a constant matrix A satisfy F[a] = a and
E[A] = A. (“Constant” means non-random in this context.)

2. EX+Y]|=FEX]+ E[Y].
3. E]AX] = AE[X] for a constant matrix A.
4. More generally (Seber & Lee Theorem 1.1):
E[AZB + C] = AF[ZIB+C
if A, B, C are constant matrices.
Definition: If X is a random vector, the covariance matrizx of X is
defined as

cov(X) = [cov(X;, Xj)]

var(X1)  cov(Xy, Xo) -+ cov(Xy, Xp)
cov(Xo, X1)  var(Xs) -+ cov(Xg, Xp)
cov(Xp, X1) cov(Xp, Xo) -+ var(X,)

Also called the variance matriz or the variance-covariance matrizx.
Alternatively:
cov(X) = E[(X — E[X])(X — E[X])']

X, — E[X1]
—E : (X1 = EIXi],- -, Xy — E[X5))
X, — E[X,)]
Example: (Independent random variables.) If Xi,..., X, are indepen-

dent then cov(X) = diag(o?,...,02).

’rYmn

If, in addition, the X; have common variance o2, then cov(X) = ¢°1I,,.
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Properties of Covariance Matrices:

1. Symmetric: cov(X) = [COV(X)]’.
Proof: cov(X;, X;) = cov(Xj, X;).

2. cov(X +a) = COV(X) if a is a constant vector.

3. cov(AX) = Acov(X)A'’if A is a constant matrix.
Proof:

cov(AX) = E[(AX—E[AX])(AX E[AX])]

= E[A(X - EX])(X - E[X])'A’]
= AE[(X - EX])(X - E[X])]A
= Acov(X)A’

4. cov(X) is positive semi-definite.

Proof: For any constant vector a, a’cov(X)a = cov(a’X).
But this is just the variance of a random variable:

cov(a'X) = var(a’X) > 0.
(Variances are never negative.)
Therefore:

5. cov(X) is positive definite provided no linear combination of the
X, is a constant (Seber & Lee Theorem 1.4)

6. cov(X) = E[XX'] — E[X](E[X])
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Definition: The correlation matrixz of X is defined as

corr(X) = [corr(X;, X;)]

1 corr( Xy, Xo) -+ corr(Xy, X,,)
_ | corr(Xa, Xy) 1 -+ corr(Xo, X))
corr(X,,, X1) corr(X,, Xo) --- 1

Denote cov(X) by ¥ = (0y;). Then the correlation matrix and
covariance matrix are related by

COV<X) - diag(\/glb Tty \/Enn)corr<X)diag(\/5117 T \/Enn)
This is easily seen using corr(X;, X;) = cov(X;, X;)/\/0i0;;-

Example: (Exchangeable random variables.) If Xi,..., X, are
exchangeable, they have a constant variance o and a constant
correlation p between any pair of variables. Thus

1 p .« o o p

1 ...
cov(X) = o p | p
p p .« o o 1

This is sometimes called an exchangeable covariance matrix.
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Definition: If X,,,«1 and Y,,«1 are random vectors,
cov(X,Y) = [cov(X;, Y))]

cov(X1, Y1) cov(Xy,Yy) -+ cov(Xy,Y,)
cov(Xs, Y1) cov(Xo, Yy) -+- cov(Xy, Yy)

cov(Xpm, Y1) cov( X, Ys) -+ cov(Xy,, V)

Note: We have now defined the covariance matrix for a random
vector and a covariance matrix for a pair of random vectors.

Alternative form:

cov(X,Y) = E[(X — E[X])(Y — E[Y])]
X, — X))
=L 3 (Yi_E[le]aaYn_E[Yn])
X, — E[X]

Note: The covariance is defined regardless of the values of m

and n.

Theorem: If A and B are constant matrices,

cov(AX,BY) = Acov(X,Y)B'.
Proof: Similar to proof of cov(AX) = Acov(X)A’.

Partitioned variance matrix: Let
X
7 — ( X ) |

i) = (%) ) )

Then
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Expectation of a Quadratic Form:

Theorem: Let E[X]| = pand cov(X) = ¥ and A be a constant
matrix. Then

E[(X — p)A(X — p)] = tr(AX).
First Proof (brute force):

E[(X - p)AX —p)] = Z Z a;j(Xi — i) — 1))
= Zzaw i) (X5 — py)]
= Z Z @ ;COV (X, Xj

J
= tr(AX).
Second Proof (more clever):

E[(X - p)AX —p)] = Er{(X - u)’A(X —p)
= Fltr{AX —pu /

)
— w{BAX - p
— W{AE[X
= tr{AX}

Corollary: E[X'AX] = tr(AXY) + p/'Ap.
Proof:

XAX =X —-p)/AX —p)+p'AX+X'Ap — p'Ap,
Therefore,

EX'AX] = E[(X — p)AX = p)] + p'Ap.
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Example: Let Xi,...,X, be independent random variables

with common mean g and variance 0. Then the sample vari-

ance s° = Y .(X; — X)?/(n — 1) is an unbiased estimate of

o2,

Proof: Let X = (X1,...,X,,)". Then E[X] = ul, cov(X) =
0 Lyn. Let A=1,,— 1,1 /n=1,-7J,. (J,=1,1,/n.)

Note that
(n—1)s*=>) (X;— X)’=X'AX
By the corollary
E[(n —1)s°] = EX'AX]
= tr(Ao’I) + pl’Apul

= (n—1)o?

because A1 = 0.
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Independence of Normal Random Variables:

Theorem: For x ~ N(0,¥) and matrices A and B, x’Ax and
Bx are independently distributed iff BXA = 0.

Proof: Sufficiency (Searle, 1971, §2.5), necessity (Driscol and
Gundberg, 1986, American Statistician)

Example: Let Xi,..., X, be independent random variables
with common mean g and variance o?. Show that the sam-
ple mean X = >  X;/n and the sample variance S* are
independently distributed.

Let x = (Xq,...,Xy) sothat x ~ N(ul,,o%L,). S* = x'Ax,
where A = 1232 and X = Bx where B = 1/, /n.

We now apply the theorem above:
IL,—J, o’

BIA = (1’ /n)(o?L,)( ) = <m

)(1, —1,) =0.

n—1

Therefore, S? and X are independently distributed.



