Lecture 2 Review:

Elementary Matrix Algebra Review

- rank, trace, transpose, determinants, orthogonality, etc.,
- linear independence, range (column) space, null space,
- spectral theorem/principal axis theorem,
- idempotent matrices, projection matrices, positive definite and positive semi-definite matrices.

RANDOM VECTORS

Definitions:

1. A random vector is a vector of random variables

$$\mathbf{X} = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}.$$

2. The mean or expectation of \mathbf{X} is defined as

$$E[\mathbf{X}] = \begin{pmatrix} E[X_1] \\ \vdots \\ E[X_n] \end{pmatrix}$$

3. A random matrix is a matrix of random variables $\mathbf{Z} = (Z_{ij})$. Its expectation is given by $E[\mathbf{Z}] = (E[Z_{ij}])$.

•

Properties:

- 1. A constant vector **a** and a constant matrix **A** satisfy $E[\mathbf{a}] = \mathbf{a}$ and $E[\mathbf{A}] = \mathbf{A}$. ("Constant" means non-random in this context.)
- 2. $E[\mathbf{X} + \mathbf{Y}] = E[\mathbf{X}] + E[\mathbf{Y}].$
- 3. $E[\mathbf{AX}] = \mathbf{A}E[\mathbf{X}]$ for a constant matrix \mathbf{A} .
- 4. More generally (Seber & Lee Theorem 1.1):

$$E[\mathbf{AZB} + \mathbf{C}] = \mathbf{A}E[\mathbf{Z}]\mathbf{B} + \mathbf{C}$$

if $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are constant matrices.

Definition: If \mathbf{X} is a random vector, the *covariance matrix* of \mathbf{X} is defined as

$$\operatorname{cov}(\mathbf{X}) \equiv [\operatorname{cov}(X_i, X_j)]$$
$$\equiv \begin{pmatrix} \operatorname{var}(X_1) & \operatorname{cov}(X_1, X_2) & \cdots & \operatorname{cov}(X_1, X_n) \\ \operatorname{cov}(X_2, X_1) & \operatorname{var}(X_2) & \cdots & \operatorname{cov}(X_2, X_n) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{cov}(X_n, X_1) & \operatorname{cov}(X_n, X_2) & \cdots & \operatorname{var}(X_n) \end{pmatrix}$$

Also called the variance matrix or the variance-covariance matrix.

Alternatively:

$$\operatorname{cov}(\mathbf{X}) = E[(\mathbf{X} - E[\mathbf{X}])(\mathbf{X} - E[\mathbf{X}])']$$
$$= E\left[\begin{pmatrix} X_1 - E[X_1] \\ \vdots \\ X_n - E[X_n] \end{pmatrix} (X_1 - E[X_1], \cdots, X_n - E[X_n]) \right]$$

Example: (Independent random variables.) If X_1, \ldots, X_n are independent then $cov(\mathbf{X}) = diag(\sigma_1^2, \ldots, \sigma_n^2)$.

If, in addition, the X_i have common variance σ^2 , then $\operatorname{cov}(\mathbf{X}) = \sigma^2 \mathbf{I}_n$.

Properties of Covariance Matrices:

- 1. Symmetric: $\operatorname{cov}(\mathbf{X}) = [\operatorname{cov}(\mathbf{X})]'.$ *Proof:* $\operatorname{cov}(X_i, X_j) = \operatorname{cov}(X_j, X_i).$
- 2. $cov(\mathbf{X} + \mathbf{a}) = cov(\mathbf{X})$ if \mathbf{a} is a constant vector.
- 3. $cov(\mathbf{AX}) = \mathbf{A}cov(\mathbf{X})\mathbf{A}'$ if \mathbf{A} is a constant matrix. *Proof:*

$$cov(\mathbf{A}\mathbf{X}) = E[(\mathbf{A}\mathbf{X} - E[\mathbf{A}\mathbf{X}])(\mathbf{A}\mathbf{X} - E[\mathbf{A}\mathbf{X}])']$$

= $E[\mathbf{A}(\mathbf{X} - E[\mathbf{X}])(\mathbf{X} - E[\mathbf{X}])'\mathbf{A}']$
= $\mathbf{A}E[(\mathbf{X} - E[\mathbf{X}])(\mathbf{X} - E[\mathbf{X}])']\mathbf{A}'$
= $\mathbf{A}cov(\mathbf{X})\mathbf{A}'$

4. $cov(\mathbf{X})$ is positive semi-definite.

Proof: For any constant vector \mathbf{a} , $\mathbf{a}' \operatorname{cov}(\mathbf{X})\mathbf{a} = \operatorname{cov}(\mathbf{a}'\mathbf{X})$. But this is just the variance of a random variable: $\operatorname{cov}(\mathbf{a}'\mathbf{X}) = \operatorname{var}(\mathbf{a}'\mathbf{X}) \ge 0$. (Variances are never negative.)

Therefore:

- 5. $cov(\mathbf{X})$ is positive definite provided no linear combination of the X_i is a constant (Seber & Lee Theorem 1.4)
- 6. $\operatorname{cov}(\mathbf{X}) = E[\mathbf{X}\mathbf{X}'] E[\mathbf{X}](E[\mathbf{X}])'$

Definition: The *correlation matrix* of \mathbf{X} is defined as

$$\operatorname{corr}(\mathbf{X}) = [\operatorname{corr}(X_i, X_j)]$$
$$\equiv \begin{pmatrix} 1 & \operatorname{corr}(X_1, X_2) & \cdots & \operatorname{corr}(X_1, X_n) \\ \operatorname{corr}(X_2, X_1) & 1 & \cdots & \operatorname{corr}(X_2, X_n) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{corr}(X_n, X_1) & \operatorname{corr}(X_n, X_2) & \cdots & 1 \end{pmatrix}.$$

Denote $\operatorname{cov}(\mathbf{X})$ by $\mathbf{\Sigma} = (\sigma_{ij})$. Then the correlation matrix and covariance matrix are related by

$$\operatorname{cov}(\mathbf{X}) = \operatorname{diag}(\sqrt{\sigma_{11}}, \dots, \sqrt{\sigma_{nn}})\operatorname{corr}(\mathbf{X})\operatorname{diag}(\sqrt{\sigma_{11}}, \dots, \sqrt{\sigma_{nn}}).$$

This is easily seen using $\operatorname{corr}(X_i, X_j) = \operatorname{cov}(X_i, X_j)/\sqrt{\sigma_{ii}\sigma_{jj}}.$

Example: (Exchangeable random variables.) If X_1, \ldots, X_n are exchangeable, they have a constant variance σ^2 and a constant correlation ρ between any pair of variables. Thus

$$\operatorname{cov}(\mathbf{X}) = \sigma^2 \begin{pmatrix} 1 & \rho & \cdots & \rho \\ \rho & 1 & \cdots & \rho \\ \vdots & \vdots & \ddots & \vdots \\ \rho & \rho & \cdots & 1 \end{pmatrix}.$$

This is sometimes called an exchangeable covariance matrix.

Definition: If $\mathbf{X}_{m \times 1}$ and $\mathbf{Y}_{n \times 1}$ are random vectors,

$$\operatorname{cov}(\mathbf{X}, \mathbf{Y}) = [\operatorname{cov}(X_i, Y_j)]$$
$$\equiv \begin{pmatrix} \operatorname{cov}(X_1, Y_1) & \operatorname{cov}(X_1, Y_2) & \cdots & \operatorname{cov}(X_1, Y_n) \\ \operatorname{cov}(X_2, Y_1) & \operatorname{cov}(X_2, Y_2) & \cdots & \operatorname{cov}(X_2, Y_n) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{cov}(X_m, Y_1) & \operatorname{cov}(X_m, Y_2) & \cdots & \operatorname{cov}(X_m, Y_n) \end{pmatrix}$$

Note: We have now defined the covariance matrix for a random vector *and* a covariance matrix for a pair of random vectors. Alternative form:

$$\operatorname{cov}(\mathbf{X}, \mathbf{Y}) = E[(\mathbf{X} - E[\mathbf{X}])(\mathbf{Y} - E[\mathbf{Y}])']$$
$$= E\left[\begin{pmatrix} X_1 - E[X_1] \\ \vdots \\ X_m - E[X_m] \end{pmatrix} (Y_1 - E[Y_1], \cdots, Y_n - E[Y_n])\right].$$

Note: The covariance is defined regardless of the values of m and n.

Theorem: If \mathbf{A} and \mathbf{B} are constant matrices,

$$\operatorname{cov}(\mathbf{AX}, \mathbf{BY}) = \mathbf{A}\operatorname{cov}(\mathbf{X}, \mathbf{Y})\mathbf{B}'.$$

Proof: Similar to proof of $cov(\mathbf{AX}) = \mathbf{A}cov(\mathbf{X})\mathbf{A}'$.

Partitioned variance matrix: Let

$$\mathbf{Z} = \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix}.$$

Then

$$\operatorname{cov}(\mathbf{Z}) = \begin{pmatrix} \operatorname{cov}(\mathbf{X}) & \operatorname{cov}(\mathbf{X}, \mathbf{Y}) \\ \operatorname{cov}(\mathbf{Y}, \mathbf{X}) & \operatorname{cov}(\mathbf{Y}) \end{pmatrix}.$$

Expectation of a Quadratic Form:

Theorem: Let $E[\mathbf{X}] = \mu$ and $cov(\mathbf{X}) = \Sigma$ and \mathbf{A} be a constant matrix. Then

$$E[(\mathbf{X} - \boldsymbol{\mu})'\mathbf{A}(\mathbf{X} - \boldsymbol{\mu})] = \operatorname{tr}(\mathbf{A}\boldsymbol{\Sigma}).$$

First Proof (brute force):

$$E[(\mathbf{X} - \boldsymbol{\mu})'\mathbf{A}(\mathbf{X} - \boldsymbol{\mu})] = E[\sum_{i} \sum_{j} a_{ij}(X_i - \mu_i)(X_j - \mu_j)]$$
$$= \sum_{i} \sum_{j} a_{ij}E[(X_i - \mu_i)(X_j - \mu_j)]$$
$$= \sum_{i} \sum_{j} a_{ij} \operatorname{cov}(X_i, X_j)$$
$$= \operatorname{tr}(\mathbf{A}\boldsymbol{\Sigma}).$$

Second Proof (more clever):

$$E[(\mathbf{X} - \boldsymbol{\mu})'\mathbf{A}(\mathbf{X} - \boldsymbol{\mu})] = E[\operatorname{tr}\{(\mathbf{X} - \boldsymbol{\mu})'\mathbf{A}(\mathbf{X} - \boldsymbol{\mu})\}]$$

= $E[\operatorname{tr}\{\mathbf{A}(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})'\}]$
= $\operatorname{tr}\{E[\mathbf{A}(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})']\}$
= $\operatorname{tr}\{\mathbf{A}E[(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})']\}$
= $\operatorname{tr}\{\mathbf{A}\Sigma\}$

Corollary: $E[\mathbf{X}'\mathbf{A}\mathbf{X}] = tr(\mathbf{A}\mathbf{\Sigma}) + \boldsymbol{\mu}'\mathbf{A}\boldsymbol{\mu}.$ Proof:

$$\mathbf{X}'\mathbf{A}\mathbf{X} = (\mathbf{X} - \boldsymbol{\mu})'\mathbf{A}(\mathbf{X} - \boldsymbol{\mu}) + \boldsymbol{\mu}'\mathbf{A}\mathbf{X} + \mathbf{X}'\mathbf{A}\boldsymbol{\mu} - \boldsymbol{\mu}'\mathbf{A}\boldsymbol{\mu},$$

Therefore,

$$E[\mathbf{X}'\mathbf{A}\mathbf{X}] = E[(\mathbf{X} - \boldsymbol{\mu})'\mathbf{A}(\mathbf{X} - \boldsymbol{\mu})] + \boldsymbol{\mu}'\mathbf{A}\boldsymbol{\mu}.$$

Example: Let X_1, \ldots, X_n be independent random variables with common mean μ and variance σ^2 . Then the sample variance $s^2 = \sum_i (X_i - \bar{X})^2 / (n - 1)$ is an unbiased estimate of σ^2 .

Proof: Let $\mathbf{X} = (X_1, \dots, X_n)'$. Then $E[\mathbf{X}] = \mu \mathbf{1}$, $\operatorname{cov}(\mathbf{X}) = \sigma^2 \mathbf{I}_{n \times n}$. Let $\mathbf{A} = \mathbf{I}_{n \times n} - \mathbf{1}_n \mathbf{1}'_n / n = \mathbf{I}_n - \bar{\mathbf{J}}_n$. $(\bar{\mathbf{J}}_n = \mathbf{1}_n \mathbf{1}'_n / n.)$ Note that

$$(n-1)s^2 = \sum_i (X_i - \bar{X})^2 = \mathbf{X}' \mathbf{A} \mathbf{X}$$

By the corollary

$$E[(n-1)s^{2}] = E[\mathbf{X}'\mathbf{A}\mathbf{X}]$$

= tr($\mathbf{A}\sigma^{2}\mathbf{I}$) + $\mu\mathbf{1}'\mathbf{A}\mu\mathbf{1}$
= $(n-1)\sigma^{2}$

because A1 = 0.

Independence of Normal Random Variables:

Theorem: For $\mathbf{x} \sim N(\boldsymbol{\theta}, \boldsymbol{\Sigma})$ and matrices \mathbf{A} and $\mathbf{B}, \mathbf{x}' \mathbf{A} \mathbf{x}$ and $\mathbf{B} \mathbf{x}$ are independently distributed iff $\mathbf{B} \boldsymbol{\Sigma} \mathbf{A} = \mathbf{0}$.

Proof: Sufficiency (Searle, 1971, §2.5), necessity (Driscol and Gundberg, 1986, American Statistician)

Example: Let X_1, \ldots, X_n be independent random variables with common mean μ and variance σ^2 . Show that the sample mean $\bar{X} = \sum_{i=1}^n X_i/n$ and the sample variance S^2 are independently distributed.

Let $\mathbf{x} = (\mathbf{X}_1, \dots, \mathbf{X}_n)'$ so that $\mathbf{x} \sim N(\mu \mathbf{1}_n, \sigma^2 \mathbf{I}_n)$. $S^2 = \mathbf{x}' \mathbf{A} \mathbf{x}$, where $\mathbf{A} = \frac{\mathbf{I}_n - \bar{\mathbf{J}}_n}{n-1}$, and $\bar{X} = \mathbf{B} \mathbf{x}$ where $\mathbf{B} = \mathbf{1}'_n/n$. We now apply the theorem above:

$$\mathbf{B}\boldsymbol{\Sigma}\mathbf{A} = (\mathbf{1}'_n/n)(\sigma^2\mathbf{I}_n)(\frac{\mathbf{I}_n - \bar{\mathbf{J}}_n}{n-1}) = (\frac{\sigma^2}{n(n-1)})(\mathbf{1}'_n - \mathbf{1}'_n) = \mathbf{0}.$$

Therefore, S^2 and \bar{X} are independently distributed.