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Lecture 2 Review:

Elementary Matrix Algebra Review

• rank, trace, transpose, determinants, orthogonality, etc.,

• linear independence, range (column) space, null space,

• spectral theorem/principal axis theorem,

• idempotent matrices, projection matrices, positive definite and

positive semi-definite matrices.

RANDOM VECTORS

Definitions:

1. A random vector is a vector of random variables

X =





X1

...

Xn



 .

2. The mean or expectation of X is defined as

E[X] =





E[X1]
...

E[Xn]



 .

3. A random matrix is a matrix of random variables Z = (Zij). Its

expectation is given by E[Z] = (E[Zij]).
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Properties:

1. A constant vector a and a constant matrix A satisfy E[a] = a and

E[A] = A. (“Constant” means non-random in this context.)

2. E[X + Y] = E[X] + E[Y].

3. E[AX] = AE[X] for a constant matrix A.

4. More generally (Seber & Lee Theorem 1.1):

E[AZB + C] = AE[Z]B + C

if A,B,C are constant matrices.

Definition: If X is a random vector, the covariance matrix of X is
defined as

cov(X) ≡ [cov(Xi, Xj)]

≡











var(X1) cov(X1, X2) · · · cov(X1, Xn)
cov(X2, X1) var(X2) · · · cov(X2, Xn)

...
... . . . ...

cov(Xn, X1) cov(Xn, X2) · · · var(Xn)











.

Also called the variance matrix or the variance-covariance matrix.

Alternatively:

cov(X) = E[(X − E[X])(X − E[X])′]

= E









X1 − E[X1]
...

Xn − E[Xn]



 (X1 − E[X1], · · · , Xn − E[Xn])



 .

Example: (Independent random variables.) If X1, . . . , Xn are indepen-

dent then cov(X) = diag(σ2

1
, . . . , σ2

n).

If, in addition, the Xi have common variance σ2, then cov(X) = σ2
In.
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Properties of Covariance Matrices:

1. Symmetric: cov(X) = [cov(X)]′.

Proof: cov(Xi, Xj) = cov(Xj, Xi).

2. cov(X + a) = cov(X) if a is a constant vector.

3. cov(AX) = Acov(X)A′ if A is a constant matrix.

Proof:

cov(AX) = E[(AX− E[AX])(AX− E[AX])′]

= E[A(X− E[X])(X − E[X])′A′]

= AE[(X− E[X])(X − E[X])′]A′

= Acov(X)A′

4. cov(X) is positive semi-definite.

Proof: For any constant vector a, a′cov(X)a = cov(a′X).

But this is just the variance of a random variable:

cov(a′
X) = var(a′

X) ≥ 0.

(Variances are never negative.)

Therefore:

5. cov(X) is positive definite provided no linear combination of the

Xi is a constant (Seber & Lee Theorem 1.4)

6. cov(X) = E[XX′] − E[X](E[X])′
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Definition: The correlation matrix of X is defined as

corr(X) = [corr(Xi, Xj)]

≡











1 corr(X1, X2) · · · corr(X1, Xn)

corr(X2, X1) 1 · · · corr(X2, Xn)
... ... . . . ...

corr(Xn, X1) corr(Xn, X2) · · · 1











.

Denote cov(X) by Σ = (σij). Then the correlation matrix and

covariance matrix are related by

cov(X) = diag(
√

σ11, . . . ,
√

σnn)corr(X)diag(
√

σ11, . . . ,
√

σnn).

This is easily seen using corr(Xi, Xj) = cov(Xi, Xj)/
√

σiiσjj.

Example: (Exchangeable random variables.) If X1, . . . , Xn are

exchangeable, they have a constant variance σ2 and a constant

correlation ρ between any pair of variables. Thus

cov(X) = σ2











1 ρ · · · ρ

ρ 1 · · · ρ
... ... . . . ...

ρ ρ · · · 1











.

This is sometimes called an exchangeable covariance matrix.
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Definition: If Xm×1 and Yn×1 are random vectors,

cov(X,Y) = [cov(Xi, Yj)]

≡











cov(X1, Y1) cov(X1, Y2) · · · cov(X1, Yn)

cov(X2, Y1) cov(X2, Y2) · · · cov(X2, Yn)
... ... . . . ...

cov(Xm, Y1) cov(Xm, Y2) · · · cov(Xm, Yn)











.

Note: We have now defined the covariance matrix for a random

vector and a covariance matrix for a pair of random vectors.

Alternative form:

cov(X,Y) = E[(X − E[X])(Y − E[Y])′]

= E









X1 − E[X1]
...

Xm − E[Xm]



 (Y1 − E[Y1], · · · , Yn − E[Yn])



 .

Note: The covariance is defined regardless of the values of m

and n.

Theorem: If A and B are constant matrices,

cov(AX,BY) = Acov(X,Y)B′.

Proof: Similar to proof of cov(AX) = Acov(X)A′.

Partitioned variance matrix: Let

Z =

(

X

Y

)

.

Then

cov(Z) =

(

cov(X) cov(X,Y)

cov(Y,X) cov(Y)

)

.
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Expectation of a Quadratic Form:

Theorem: Let E[X] = µ and cov(X) = Σ and A be a constant

matrix. Then

E[(X − µ)′A(X − µ)] = tr(AΣ).

First Proof (brute force):

E[(X − µ)′A(X − µ)] = E[
∑

i

∑

j

aij(Xi − µi)(Xj − µj)]

=
∑

i

∑

j

aijE[(Xi − µi)(Xj − µj)]

=
∑

i

∑

j

aijcov(Xi, Xj)

= tr(AΣ).

Second Proof (more clever):

E[(X − µ)′A(X − µ)] = E[tr{(X − µ)′A(X − µ)}]

= E[tr{A(X − µ)(X − µ)′}]

= tr{E[A(X − µ)(X − µ)′]}
= tr{AE[(X − µ)(X − µ)′]}
= tr{AΣ}

Corollary: E[X′
AX] = tr(AΣ) + µ′

Aµ.

Proof:

X
′
AX = (X − µ)′A(X − µ) + µ′

AX + X
′
Aµ − µ′

Aµ,

Therefore,

E[X′
AX] = E[(X − µ)′A(X − µ)] + µ′

Aµ.
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Example: Let X1, . . . , Xn be independent random variables

with common mean µ and variance σ2. Then the sample vari-

ance s2 =
∑

i(Xi − X̄)2/(n − 1) is an unbiased estimate of

σ2.

Proof: Let X = (X1, . . . , Xn)
′. Then E[X] = µ1, cov(X) =

σ2
In×n. Let A = In×n−1n1

′
n/n = In− J̄n. (J̄n = 1n1

′
n/n.)

Note that

(n − 1)s2 =
∑

i

(Xi − X̄)2 = X
′
AX

By the corollary

E[(n − 1)s2] = E[X′
AX]

= tr(Aσ2
I) + µ1

′
Aµ1

= (n − 1)σ2

because A1 = 0.
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Independence of Normal Random Variables:

Theorem: For x ∼ N(θ,Σ) and matrices A and B, x′
Ax and

Bx are independently distributed iff BΣA = 0.

Proof: Sufficiency (Searle, 1971, §2.5), necessity (Driscol and

Gundberg, 1986, American Statistician)

Example: Let X1, . . . , Xn be independent random variables

with common mean µ and variance σ2. Show that the sam-

ple mean X̄ =
∑n

i=1 Xi/n and the sample variance S2 are

independently distributed.

Let x = (X1, . . . ,Xn)′ so that x ∼ N(µ1n, σ
2
In). S2 = x

′
Ax,

where A = In−J̄n

n−1 , and X̄ = Bx where B = 1
′
n/n.

We now apply the theorem above:

BΣA = (1′
n/n)(σ2

In)(
In − J̄n

n − 1
) = (

σ2

n(n − 1)
)(1′

n − 1
′
n) = 0.

Therefore, S2 and X̄ are independently distributed.


