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Lecture 3 Review:

Random vectors: vectors of random variables.

• The expectation of a random vector is just the vector of expectations.

• cov(X,Y) is a matrix with i, j entry cov(Xi, Yj)

• cov(AX,BY) = Acov(X,Y)B′

• We introduced quadratic forms – X′AX, where X is a random vector and A is
a matrix. More to come . . .

4.1 Definition of the Multivariate Normal Distribution

The following are equivalent definitions of the multivariate normal distribution (MVN).

Given a vector µ and p.s.d. matrix Σ, Y ∼ Nn(µ,Σ) if:

Definition 1: For p.d. Σ, the density function of Y is

fY(y) = (2π)−n/2|Σ|−1/2 exp{−1

2
(y − µ)′Σ−1(y − µ)}.

Definition 2: The moment generating function (m.g.f.) of Y is

MY(t) ≡ E[et
′
Y] = exp{µ′t +

1

2
t′Σt}.

Definition 3: Y has the same distribution as

AZ + µ,

where Z = (Z1, . . . , Zk) are independent N(0, 1) random variables and An×k satisfies
AA′ = Σ.

COMMENT: You may be inclined to focus on definition 1, but the others are more
useful.
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Theorem: Definitions 1, 2, and 3 are equivalent for Σ > 0. Definitions 2 and 3 are
equivalent for Σ ≥ 0

Proof of Def 3 ⇒ Def 2:

For Zi ∼ N(0, 1),

MZi
(ti) = E[etiZi] =

∞
∫

−∞

eziti
e−z2

i
/2

√
2π

dzi = et2
i
/2

∞
∫

−∞

e−(zi−ti)
2/2

√
2π

dzi = et2
i
/2.

If Z = (Z1, . . . , Zk) is a random sample from N(0, 1), then

MZ(t) = E[eΣiziti] = E[
k

∏

i=1

eziti]
ind
=

k
∏

i=1

E[eziti] =
k

∏

i=1

MZi
(ti) = exp{

k
∑

i=1

t2i /2} = exp{t′t/2}.

If Y = AZ + µ,

MY(t) ≡ E[exp{Y′t}]
= E[exp{(AZ + µ)′t}]
= exp{µ′t}E[exp{(AZ)′t}]
= exp{µ′t}MZ(A′t)

= exp{µ′t} exp{1

2
(A′t)′(A′t)}

= exp{µ′t} exp{1

2
t′(AA′)t}

= exp{µ′t +
1

2
t′Σt}.
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Proof of Def 2 ⇒ Def 3:

Since Σ ≥ 0 (and Σ = Σ′), there exists an orthogonal matrix, Tn×n, such that
T′ΣT = Λ, where Λ is diagonal with non-negative elements. Therefore,

Σ = TΛT′

= TΛ1/2Λ1/2T′

= (TΛ1/2)(TΛ1/2)′

= AA′.

In other words, let A = TΛ1/2. Now, in the previous proof we showed the m.g.f. of
AZ + µ is

exp{µ′t +
1

2
t′Σt},

the same as Y. Because the m.g.f. uniquely determines the distribution (when the
m.g.f. exists in a neighbourhood of t = 0), Y has the same distribution as AZ + µ.
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Proof of Def 3 ⇒ Def 1: (for p.d. Σ).

Because Σ is positive definite, there is a non-singular An×n such that AA′ = Σ

(lecture notes # 2, page 10). Let Y = AZ + µ, where Z = (Z1, . . . , Zn) is a random
sample from N(0, 1). The density of Z is

fZ(z) =

n
∏

i=1

(2π)−1/2 exp{−1

2
Z2

i } = (2π)−n/2 exp{−1

2
Z′Z}.

The density function of Y is

fY(y) = fZ(z(y))|J |,

where J is the Jacobian

J =

∣

∣

∣

∣

(

∂Zi

∂Yj

)
∣

∣

∣

∣

= |A−1| = |A|−1,

because Z = A−1(Y −µ). Therefore,

fY(y) = fZ(A−1(y −µ))|A|−1

= (2π)−n/2|A|−1 exp{−1

2
[A−1(y − µ)]′[A−1(y −µ)]}

= (2π)−n/2|AA′|−1/2 exp{−1

2
(y − µ)′(AA′)−1(y − µ)}

= (2π)−n/2|Σ|−1/2 exp{−1

2
(y − µ)′Σ−1(y − µ)}

(Using: |A|−1 = |A|− 1

2 |A|− 1

2 = |A|− 1

2 |A′|− 1

2 = (|A||A′|)− 1

2 = |AA′|− 1

2 )

Proof of Def 1 ⇒ Def 2 (for p.d. Σ): Exercise: Use pdf in Def 1 and solve directly

for mgf.
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4.2 Properties of the Multivariate Normal Distribution

1. E[Y] = µ, cov(Y) = Σ (verify using Definition 3 and properties of means and
covariances of random vectors)

2. If Z = (Z1, . . . , Zn) is a random sample from N(0, 1) then Z has the Nn(0n, In×n)
distribution (use Definition 3).

3. If Σ is not p.d. then Y has a singular MVN distribution and no density function
exists.

Example: A singular MVN distribution. Let Z = (Z1, Z2)
′ ∼ N2(0, I), and let A be

the linear transformation matrix A =

(

1
2

−1
2

−1
2

1
2

)

.

Let Y = (Y1, Y2)
′ be the linear transformation

Y = AZ =

(

(Z1 − Z2)/2
(Z2 − Z1)/2

)

.

By Definition 3, Y ∼ N(0,Σ), where Σ = AA′.

Σ = AA′ =

(

1
2

−1
2

−1
2

1
2

) (

1
2

−1
2

−1
2

1
2

)

=

(

1
2

−1
2

−1
2

1
2

)

corr=

(

1 −1
−1 1

)

. Makes sense!
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4.3 Linear Transformations of MVN Vectors

1. If Y ∼ Nn(µ,Σ) and Cp×n is a matrix of rank p, then CY ∼ Np(Cµ,CΣC′).

Proof: By Def 3, Y = AZ + µ, where AA′ = Σ. Then

CY = C(AZ + µ)

= CAZ + Cµ

∼ N(Cµ,CA(CA)′) (by Def 3)

= N(Cµ,C(AA′)C)

= N(Cµ,CΣC′).

2. Y is MVN if and only if a′Y is normally distributed for all non-zero vectors a.

Proof: If Y ∼ Nn(µ,Σ) then a′Y ∼ N(a′
µ, a′Σa) by 4.3.1 (above).

Conversely, assume that X = a′Y is univariate normal for all non-zero a. In
other words, X ∼ N(a′

µ, a′Σa), where µ = E[Y] and Σ = cov(Y). Using the
form of the m.g.f. of a univariate normal random variable, the m.g.f. of X is

E[exp(Xt)] = MX(t) = exp{(a′
µ)t +

1

2
(a′Σa)t2}

for all t. Setting t = 1 in MX(t) gives MY:

E[exp(a′Y)] = MX(t = 1) = exp{(a′
µ) +

1

2
(a′Σa)} = MY(a),

which is the m.g.f. of Nn(µ,Σ). Therefore, Y ∼ Nn(µ,Σ) by Def 2.

In words, a random vector is MVN iff every linear combination of its random
variable components is a normal random variable.


