1

Lecture 3 Review:

Random vectors: vectors of random variables.

- The expectation of a random vector is just the vector of expectations.
- $cov(\mathbf{X}, \mathbf{Y})$ is a matrix with i, j entry $cov(X_i, Y_j)$
- $cov(\mathbf{AX}, \mathbf{BY}) = \mathbf{A}cov(\mathbf{X}, \mathbf{Y})\mathbf{B}'$
- We introduced quadratic forms $-\mathbf{X}'\mathbf{A}\mathbf{X}$, where \mathbf{X} is a random vector and \mathbf{A} is a matrix. More to come . . .

4.1 Definition of the Multivariate Normal Distribution

The following are equivalent definitions of the multivariate normal distribution (MVN).

Given a vector $\boldsymbol{\mu}$ and p.s.d. matrix $\boldsymbol{\Sigma}$, $\mathbf{Y} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ if:

Definition 1: For p.d. Σ , the density function of Y is

$$f_{\mathbf{Y}}(\mathbf{y}) = (2\pi)^{-n/2} |\mathbf{\Sigma}|^{-1/2} \exp\{-\frac{1}{2}(\mathbf{y} - \boldsymbol{\mu})'\mathbf{\Sigma}^{-1}(\mathbf{y} - \boldsymbol{\mu})\}.$$

Definition 2: The moment generating function (m.g.f.) of Y is

$$M_{\mathbf{Y}}(\mathbf{t}) \equiv E[e^{\mathbf{t}'\mathbf{Y}}] = \exp{\{\boldsymbol{\mu}'\mathbf{t} + \frac{1}{2}\mathbf{t}'\boldsymbol{\Sigma}\mathbf{t}\}}.$$

Definition 3: Y has the same distribution as

$$AZ + \mu$$
,

where $\mathbf{Z} = (Z_1, \dots, Z_k)$ are independent N(0, 1) random variables and $\mathbf{A}_{n \times k}$ satisfies $\mathbf{A}\mathbf{A}' = \mathbf{\Sigma}$.

COMMENT: You may be inclined to focus on definition 1, but the others are more useful.

Theorem: Definitions 1, 2, and 3 are equivalent for $\Sigma > 0$. Definitions 2 and 3 are equivalent for $\Sigma \geq 0$

Proof of Def $3 \Rightarrow$ Def 2:

For $Z_i \sim N(0, 1)$,

$$M_{Z_i}(t_i) = E[e^{t_i Z_i}] = \int_{-\infty}^{\infty} e^{z_i t_i} \frac{e^{-z_i^2/2}}{\sqrt{2\pi}} dz_i = e^{t_i^2/2} \int_{-\infty}^{\infty} \frac{e^{-(z_i - t_i)^2/2}}{\sqrt{2\pi}} dz_i = e^{t_i^2/2}.$$

If $\mathbf{Z} = (Z_1, \dots, Z_k)$ is a random sample from N(0, 1), then

$$M_{\mathbf{Z}}(\mathbf{t}) = E[e^{\Sigma_i z_i t_i}] = E[\prod_{i=1}^k e^{z_i t_i}] \stackrel{\text{ind}}{=} \prod_{i=1}^k E[e^{z_i t_i}] = \prod_{i=1}^k M_{Z_i}(t_i) = \exp\{\sum_{i=1}^k t_i^2/2\} = \exp\{\mathbf{t}'\mathbf{t}/2\}.$$

If $Y = AZ + \mu$,

$$\begin{split} M_{\mathbf{Y}}(\mathbf{t}) &\equiv E[\exp\{\mathbf{Y}'\mathbf{t}\}] \\ &= E[\exp\{(\mathbf{A}\mathbf{Z} + \boldsymbol{\mu})'\mathbf{t}\}] \\ &= \exp\{\boldsymbol{\mu}'\mathbf{t}\}E[\exp\{(\mathbf{A}\mathbf{Z})'\mathbf{t}\}] \\ &= \exp\{\boldsymbol{\mu}'\mathbf{t}\}M_{\mathbf{Z}}(\mathbf{A}'\mathbf{t}) \\ &= \exp\{\boldsymbol{\mu}'\mathbf{t}\}\exp\{\frac{1}{2}(\mathbf{A}'\mathbf{t})'(\mathbf{A}'\mathbf{t})\} \\ &= \exp\{\boldsymbol{\mu}'\mathbf{t}\}\exp\{\frac{1}{2}\mathbf{t}'(\mathbf{A}\mathbf{A}')\mathbf{t}\} \\ &= \exp\{\boldsymbol{\mu}'\mathbf{t} + \frac{1}{2}\mathbf{t}'\boldsymbol{\Sigma}\mathbf{t}\}. \end{split}$$

Proof of Def $2 \Rightarrow$ Def 3:

Since $\Sigma \geq 0$ (and $\Sigma = \Sigma'$), there exists an orthogonal matrix, $\mathbf{T}^{n \times n}$, such that $\mathbf{T}'\Sigma\mathbf{T} = \Lambda$, where Λ is diagonal with non-negative elements. Therefore,

In other words, let $\mathbf{A} = \mathbf{T} \mathbf{\Lambda}^{1/2}$. Now, in the previous proof we showed the m.g.f. of $\mathbf{AZ} + \boldsymbol{\mu}$ is

$$\exp\{\boldsymbol{\mu}'\mathbf{t} + \frac{1}{2}\mathbf{t}'\boldsymbol{\Sigma}\mathbf{t}\},\$$

the same as **Y**. Because the m.g.f. uniquely determines the distribution (when the m.g.f. exists in a neighbourhood of $\mathbf{t} = \mathbf{0}$), **Y** has the same distribution as $\mathbf{AZ} + \boldsymbol{\mu}$.

Proof of Def $3 \Rightarrow$ Def 1: (for p.d. Σ).

Because Σ is positive definite, there is a non-singular $\mathbf{A}_{n\times n}$ such that $\mathbf{A}\mathbf{A}' = \Sigma$ (lecture notes # 2, page 10). Let $\mathbf{Y} = \mathbf{A}\mathbf{Z} + \boldsymbol{\mu}$, where $\mathbf{Z} = (Z_1, \ldots, Z_n)$ is a random sample from N(0, 1). The density of \mathbf{Z} is

$$f_{\mathbf{Z}}(\mathbf{z}) = \prod_{i=1}^{n} (2\pi)^{-1/2} \exp\{-\frac{1}{2}Z_i^2\} = (2\pi)^{-n/2} \exp\{-\frac{1}{2}\mathbf{Z}'\mathbf{Z}\}.$$

The density function of \mathbf{Y} is

$$f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{Z}}(\mathbf{z}(\mathbf{y}))|J|,$$

where J is the Jacobian

$$J = \left| \left(\frac{\partial Z_i}{\partial Y_j} \right) \right| = |\mathbf{A}^{-1}| = |\mathbf{A}|^{-1},$$

because $\mathbf{Z} = \mathbf{A}^{-1}(\mathbf{Y} - \boldsymbol{\mu})$. Therefore,

$$f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{Z}}(\mathbf{A}^{-1}(\mathbf{y} - \boldsymbol{\mu}))|\mathbf{A}|^{-1}$$

$$= (2\pi)^{-n/2}|\mathbf{A}|^{-1}\exp\{-\frac{1}{2}[\mathbf{A}^{-1}(\mathbf{y} - \boldsymbol{\mu})]'[\mathbf{A}^{-1}(\mathbf{y} - \boldsymbol{\mu})]\}$$

$$= (2\pi)^{-n/2}|\mathbf{A}\mathbf{A}'|^{-1/2}\exp\{-\frac{1}{2}(\mathbf{y} - \boldsymbol{\mu})'(\mathbf{A}\mathbf{A}')^{-1}(\mathbf{y} - \boldsymbol{\mu})\}$$

$$= (2\pi)^{-n/2}|\mathbf{\Sigma}|^{-1/2}\exp\{-\frac{1}{2}(\mathbf{y} - \boldsymbol{\mu})'\mathbf{\Sigma}^{-1}(\mathbf{y} - \boldsymbol{\mu})\}$$

(Using: $|\mathbf{A}|^{-1} = |\mathbf{A}|^{-\frac{1}{2}}|\mathbf{A}|^{-\frac{1}{2}} = |\mathbf{A}|^{-\frac{1}{2}}|\mathbf{A}'|^{-\frac{1}{2}} = (|\mathbf{A}||\mathbf{A}'|)^{-\frac{1}{2}} = |\mathbf{A}\mathbf{A}'|^{-\frac{1}{2}}$)

Proof of Def 1 \Rightarrow Def 2 (for p.d. Σ): Exercise: Use pdf in Def 1 and solve directly for mgf.

5

4.2 Properties of the Multivariate Normal Distribution

- 1. $E[\mathbf{Y}] = \boldsymbol{\mu}$, $cov(\mathbf{Y}) = \boldsymbol{\Sigma}$ (verify using Definition 3 and properties of means and covariances of random vectors)
- 2. If $\mathbf{Z} = (Z_1, \dots, Z_n)$ is a random sample from N(0, 1) then \mathbf{Z} has the $N_n(\mathbf{0_n}, \mathbf{I_{n \times n}})$ distribution (use Definition 3).
- 3. If Σ is not p.d. then Y has a singular MVN distribution and no density function exists.

Example: A singular MVN distribution. Let $\mathbf{Z} = (Z_1, Z_2)' \sim N_2(\mathbf{0}, \mathbf{I})$, and let \mathbf{A} be the linear transformation matrix $\mathbf{A} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$.

Let $\mathbf{Y} = (Y_1, Y_2)'$ be the linear transformation

$$\mathbf{Y} = \mathbf{AZ} = \begin{pmatrix} (Z_1 - Z_2)/2 \\ (Z_2 - Z_1)/2 \end{pmatrix}.$$

By Definition 3, $\mathbf{Y} \sim N(\mathbf{0}, \boldsymbol{\Sigma})$, where $\boldsymbol{\Sigma} = \mathbf{A}\mathbf{A}'$.

$$oldsymbol{\Sigma} = \mathbf{A}\mathbf{A}' = \left(egin{array}{cc} rac{1}{2} & -rac{1}{2} \ -rac{1}{2} & rac{1}{2} \end{array}
ight) \left(egin{array}{cc} rac{1}{2} & -rac{1}{2} \ -rac{1}{2} & rac{1}{2} \end{array}
ight) = \left(egin{array}{cc} rac{1}{2} & -rac{1}{2} \ -rac{1}{2} & rac{1}{2} \end{array}
ight)$$

$$corr = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
. Makes sense!

- 4.3 Linear Transformations of MVN Vectors
 - 1. If $\mathbf{Y} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $\mathbf{C}_{p \times n}$ is a matrix of rank p, then $\mathbf{CY} \sim N_p(\mathbf{C}\boldsymbol{\mu}, \mathbf{C}\boldsymbol{\Sigma}\mathbf{C}')$. Proof: By Def 3, $\mathbf{Y} = \mathbf{AZ} + \boldsymbol{\mu}$, where $\mathbf{AA}' = \boldsymbol{\Sigma}$. Then

$$\begin{aligned} \mathbf{CY} &= \mathbf{C}(\mathbf{AZ} + \boldsymbol{\mu}) \\ &= \mathbf{CAZ} + \mathbf{C}\boldsymbol{\mu} \\ &\sim N(\mathbf{C}\boldsymbol{\mu}, \mathbf{CA}(\mathbf{CA})') \text{ (by Def 3)} \\ &= N(\mathbf{C}\boldsymbol{\mu}, \mathbf{C}(\mathbf{AA}')\mathbf{C}) \\ &= N(\mathbf{C}\boldsymbol{\mu}, \mathbf{C}\boldsymbol{\Sigma}\mathbf{C}'). \end{aligned}$$

2. \mathbf{Y} is MVN if and only if $\mathbf{a}'\mathbf{Y}$ is normally distributed for all non-zero vectors \mathbf{a} .

Proof: If $\mathbf{Y} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ then $\mathbf{a}'\mathbf{Y} \sim N(\mathbf{a}'\boldsymbol{\mu}, \mathbf{a}'\boldsymbol{\Sigma}\mathbf{a})$ by 4.3.1 (above).

Conversely, assume that $X = \mathbf{a}'\mathbf{Y}$ is univariate normal for all non-zero \mathbf{a} . In other words, $X \sim N(\mathbf{a}'\boldsymbol{\mu}, \mathbf{a}'\boldsymbol{\Sigma}\mathbf{a})$, where $\boldsymbol{\mu} = E[\mathbf{Y}]$ and $\boldsymbol{\Sigma} = \text{cov}(\mathbf{Y})$. Using the form of the m.g.f. of a univariate normal random variable, the m.g.f. of X is

$$E[\exp(Xt)] = M_X(t) = \exp\{(\mathbf{a}'\boldsymbol{\mu})t + \frac{1}{2}(\mathbf{a}'\boldsymbol{\Sigma}\mathbf{a})t^2\}$$

for all t. Setting t = 1 in $M_X(t)$ gives M_Y :

$$E[\exp(\mathbf{a}'\mathbf{Y})] = M_X(t=1) = \exp\{(\mathbf{a}'\boldsymbol{\mu}) + \frac{1}{2}(\mathbf{a}'\boldsymbol{\Sigma}\mathbf{a})\} = M_{\mathbf{Y}}(\mathbf{a}),$$

which is the m.g.f. of $N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Therefore, $\mathbf{Y} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ by Def 2.

In words, a random vector is MVN iff every linear combination of its random variable components is a normal random variable.