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Lecture 4 Review:
Three definitions of normal random vectors:

1. Normal probability density function (p.d.f.),

2. Moment generating function,

3. Relationship with independent univariate normals.

5.1 Orthogonal Transformations of MVN Vectors

Let Y ~ N,(u,0°T), and let T, be an orthogonal matrix.
Then TY ~ N, (T, o°1).

Proof: By 4.3.1,
TY ~ N,(Tu,oc*TT') = N,(Tw, o°T).

Why is this interesting/important?

Mutually independent normal random variables with common
variance remain mutually independent with common variance
under orthogonal transformations.
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1. Orthogonal matrices correspond to rotations and reflections
about the origin. In particular, they preserve vector length:

ITy|]”> = (Ty)(Ty) =y T'Ty = y'y = ||y|*.

2. Orthogonal matrices are transformations about 0. A sim-

ilar result holds for transformations about . For Y ~
N, (u,0%L,), let

w=T(Y—u+p
for some orthogonal transformation 7. Then
w ~ N,(u, o°L,).
Y is “spherically symmetric” about .

3. The common variance MVN distribution is the only MVN
distribution with this invariance property (mutually inde-
pendent univariate normal variables with the same vari-
ance remain mutually independent normal variables under
orthogonal transformations). Other multivariate distribu-
tions and MVN distributions with unequal variances do not
have this invariance.

Definition: For any positive integer d, x3 is the distribution
of Zle Z? where 7y, ..., Zy are independent and identically
distributed N (0, 1) random variables.
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Example (Independence of sample mean and variance):

Let Yi,...,Y, be independent N(u,0?) r.v.’s. Then Y and
s? = L3 (Y; — Y)? are independent and (n — 1)s*/o? ~
Xin—1-

Proof: Let Y = (Y1,...,Y,). We have Y ~ N,(ul,o’I).
Let T be an orthogonal matrix with first row equal to 1’/y/n.

(How do we know such a T exists?) Let X = TY. Then
X ~ N, (uT1,0%T) by 5.1. Now,

Z —=Yi= VnY . (1)
Because T preserves length:
Y X}=XX=YY=) Y~ (2)
i=1 i=1
Therefore,
Z X2 Zz 1 X2]
=i Y7 — X7 by (2)

= > Y7 = nY? by (1)
= (n —1)s
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Because X7 and (Xo, ..., X,,) are independent, Y (a function of
X1) and s? (a function Xs, ..., X,) are independent (Seber,
1977, Theorem 1.9).

Remember that rows 2 through n of T are orthogonal to row
1, and in particular orthogonal to 1. This implies that F[X]| =
pT1 = (/nu,0,...,0). Altogether, we have that Xo, ..., X,
are independent N (0, o) random variables. Therefore,

n

= 1)st/o* =3 X3/ = 3 (Xifo) i

1=2
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5.2 Partitioned MVN distributions:
Let Y ~ N,(p, 3) be partitioned as

Y_(Y2)’

where Y1 ispx 1 and Yo is ¢ X 1, (p+¢ = n). Then the mean
and covariance matrix are correspondingly partitioned as

= (o)

> 211 212 o COV(Yl) COV(Yl,YQ)
O\ Xy B ) cov(Yy, Yy)  cov(Yy) .

and

Some Facts and Results:

1. Marginal distributions: Y1 ~ N, (1, £11), Yo ~ Ny (g, X99).

Proof: Use 4.3.1 with Y; = C;Y = (Ix),0,%,)Y and
Y,y = CoY = (0yxp, Liny) Y.
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2. Uncorrelated implies independent for normal random vectors:
Y, and Y5 are independent if and only if 315 = X5, = 0.

Proof:
Let t = (t1, t2)". Then the m.g.f. of Y can be written

1
My (t) = exp(p't + 5’5’2‘5)
1
= exp{piti + poty + §(t/1211t1 + t) X0ty +
toXorty + th3ooto) }
Y, and Y5 are independent iff this equals
1
MY1<t1)MY2<t2) = exp(u’ltl + §t/1211t1)
1
X exp(uétg + §t/2222t2),
for all t1, to. This holds exactly when
tllzlgtg —+ tézgltl = O,

for all tl, tQ, i.e, when 212 = 2/21 = 0.
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3. Conditional distributions: If 3J is p.d. then the conditional
distribution of Y given Yy is

Yi[Y2 = yo ~ Np(p+Z1255 (Y2 p), B11— 1955, Zon).

Proof: see Seber & Lee, Example 2.9
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EXERCISE: Linear Regression with Random X's

Suppose we have:
Y, = 38X, + ¢, 1=1,2,...,n,

where

e Y is the response variable,

e Bis a (p x 1) vector of regression parameters,

e X, is a (p x 1) vector of random variables,

e ¢, is a normal mean zero error term.

e Assume X; ~ N,(px, Xxx), Cov(X;, &) =0,

e the joint distribution (Y}, X;) is normal

Y; Hy oy Oyx
~ IVp+1 ) .
X, M OXy 2IXX

1. Rewrite the joint distribution of (Y;, X;) using only pux, Xxx, 3, 0>.

PRAEACES
X, pi px |’ Yxx3 2ixx '

2. Derive the conditional distribution of Y;|X; = x;.
Using 5.2.3, Y;|X; = x; is normal with mean
B'ux + BExxExx(X - px) = X
and with variance
B'IxxB + o — B ExxTxxExxB = 07
Therefore Y (x;) = [Vi|X; = x;] ~ N1 (8'%;, 02).
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5.3 Linear Regression, Random X’s, and the Multiple Correlation Coeffi-
cient

Suppose we have:
}/i:/BlXi_{—Ei) i:1727"°7n7
where

e Y is the response variable,

e Bis a (p x 1) vector of regression parameters,
e X, is a (p x 1) vector of random variables,

® ¢; is a normal mean zero error term.

e Assume X; ~ N,(pux,3xx), Cov(X;,¢;) =0,

You just derived the joint distribution (Y;, X;) and the conditional dis-
tribution of Y;|X; = x;.

Definition: The multiple correlation coefficient of Y with X is defined
as

2

~ 2—1
pyx = corr(Y,Y (X)) = \/O'YX JXXGXY
Y

It can be shown that py.x is the largest possible correlation between Y
and any linear function of the components of X, i.e., for any constant
vectors a and b,

corr(Y,a’X +b) < py.x.

Also,
var(Y|X =x) = 03% — O'YXE}_(1X0'XY = 012/(1 — P%/:X)~

Because of this equation, p? x is sometimes called “the proportion of
the variance of Y explained by X.”



