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Motivation: Projections, Quadratic Forms, χ2 Distributions:

Suppose

Y
n×1 = β0x0 + β1x1 + · · · + βp−1xp−1

︸ ︷︷ ︸
≡µ

+ε = Xβ + ε,

where ε is Nn(0, σ
2In). That is, Y ∼ Nn(µ, σ2In). Let Ŷ be the

projection of Y onto Ω, the space spanned by {x0,x1, . . .xp−1}. That

is, Ŷ = PY for some projection matrix P. Also, since Ŷ is in the space

spanned by {x0,x1, . . . xp−1}, it follows that Ŷ is a linear combination
of the columns of X: Ŷ = Xβ̂.

This is our current definition of β̂.

Let ε̂ = Y−Ŷ = IY−PY = (I−P)Y. Then ε̂ and Ŷ are orthogonal:

ε̂′
Ŷ = ((I− P)Y)′PY = Y

′(I− P)PY = Y
′
PY − Y

′
P

2
Y = 0

since P is idempotent.

To summarize,
ε̂ ≡ (I− P)Y ⊥ PY ≡ Ŷ,

with ε̂ ∈ Ω⊥.
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Since Ŷ and Y − Ŷ = ε̂ are orthogonal and sum to Y,

Y
′
Y = ‖Y‖2 = ‖Ŷ + Y − Ŷ‖2 =

by Pythagorean Theorem
︷ ︸︸ ︷

‖Ŷ‖2 + ‖Y − Ŷ‖2.

We can also write this as

Y
′
Y = (PY)′(PY) + ((In −P)Y)′(In − P)Y

= Y
′
PY +

What is this? RSS
︷ ︸︸ ︷

Y
′(In − P)Y

︸ ︷︷ ︸

What are these? quadratic forms

An important fact is that since P and (In−P) are projection matrices,

Y
′
PY and Y

′(In −P)Y are χ2–distributed (and vice-versa).
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In classical linear model theory, test statistics arise from sums of squares

(special cases of quadratic forms) with χ2 distributions.

Theorem: If Y ∼ Nn(θ,Σ) and Σ is p.d., then

(Y − θ)′Σ−1(Y − θ) ∼ χ2
n.

Proof: Since Σ is p.d., Σ = AA
′ for non-singular An×n

(Lecture 2, Seber & Lee, A4.2).

By definition 3 of the multivariate normal distribution (Lecture 4),

Y = AZ + θ where Z is a random sample from N(0, 1). Therefore,

(Y − θ)′Σ−1(Y − θ) = (Y − θ)′(AA
′)−1(Y − θ)

= (Y − θ)′(A′)−1
A

−1(Y − θ)

= [A−1(Y − θ)]′[A−1(Y − θ)]

= Z
′
Z

∼ χ2
n.
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The next result concerns the spherically symmetric case (Σ = σ2
In).

Theorem: (Seber & Lee, Thm 2.7). Let Y ∼ Nn(θ, σ2
I) and Pn×n be

symmetric of rank r. Then Q ≡ (Y − θ)′P(Y − θ)/σ2 ∼ χ2
r, if and

only if P is idempotent (i.e., P2 = P) and hence a projection.

Proof of P2 = P =⇒ Q ∼ χ2
r:

If P
2 = P, then P has r eigenvalues = 1 and n − r eigenvalues = 0.

Therefore, there is an orthogonal matrix T s.t. T′PT = Λ, where

Λ = diag[Ir,0n−r].

Now let

Z = T
′(Y − θ).

Recall that orthogonal transformations of independent normal random
vectors are independent with the same variance. This implies that

Z ∼ Nn(0, σ2
I). Therefore,

Q ≡ (Y − θ)′P(Y − θ)/σ2

= (Y − θ)′TΛT
′(Y − θ)/σ2

=
1

σ
Z
′
Λ

1

σ
Z

=

r∑

i=1

(
Zi

σ
)2

∼ χ2
r.

Proof of Q ∼ χ2
r =⇒ P

2 = P: (See Seber, 1977, Thm 2.8, p. 37).

Interpretation: in the spherically symmetric case (Σ = σ2I), the only

quadratic forms with χ2 distributions are sums of squares, i.e., squared

lengths of projections (x′
Px = ||Px||2).
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Non-Central χ2 Distribution

Definition: The non-central chi-squared distribution with n degrees of

freedom and non-centrality parameter λ, denoted χ2
n(λ), is defined as

the distribution of
∑n

i=1 Z2
i , where Z1, . . . , Zn are independent N(µi, 1)

r.v.’s and λ =
∑n

i=1 µ2
i /2.

Theorem: If Y ∼ Nn(µ, I) µ ∈ <n, then Y
′
Y has moment generating

function

MY′Y(t) = (1 − 2t)−
n

2 exp{µ′µ

2
[

1

1 − 2t
− 1]}, t < 1/2.

Proof: Suppose first that n = 1. For any t < 1/2,

MY 2(t) = E[eY 2t] =

∞∫

−∞

ey2te
−(y−µ)2/2

√
2π

dy =

∞∫

−∞

exp{y2t − (y − µ)2/2}√
2π

dy

Expand the exponential and collect terms:

=

∞∫

−∞

1√
2π

exp{−(1 − 2t)

2
y2 + yµ − µ2

2
} dy

Substitute x = y
√

1 − 2t:

=

∞∫

−∞

1√
2π

exp{−x2

2
+

xµ√
1 − 2t

− µ2

2
} dx√

1 − 2t

Complete the square:

= (1 − 2t)−
1

2

∞∫

−∞

1√
2π

exp{−1

2
(x − µ√

1 − 2t
)2 +

µ2

2
[

1

1 − 2t
− 1]} dx

= (1 − 2t)−
1

2exp{µ2

2
[

1

1 − 2t
− 1]}.
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Now suppose n ≥ 2. For any t < 1/2, we have

MY′Y(t) = E[exp{t(Y′
Y)}] = E[exp{

n∑

i=1

tY 2
i }] = E[

n∏

i=1

exp{tY 2
i }]

ind
=

n∏

i=1

E[exp{tY 2
i }] =

n∏

i=1

MY 2

i
(t) =

n∏

i=1

[(1 − 2t)−
1

2exp{µ2
i

2
[

1

1 − 2t
− 1]}]

= (1−2t)−
n

2 exp{
∑n

i=1 µ2
i

2
[

1

1 − 2t
−1]} = (1−2t)−

n

2 exp{µ′µ

2
[

1

1 − 2t
−1]}.

This is the m.g.f. of the non-central chi-square distribution, χ2
n(µ

′µ/2),

with noncentrality parameter λ = µ′µ/2.

We refer to χ2
n(0) ≡ χ2

n as the central chi-square distribution.

Basic facts:

1. If Y ∼ χ2(n, λ), then E[Y ] = n + 2λ

2. If Y ∼ χ2
n with n > 2, then E[ 1

Y ] = 1
n−2

Theorem: Let Y ∼ Nn(µ, σ2
In) and P = P

′. P = P
2 and

rank[P] = r if and only if

Y
′
PY/σ2 ∼ χ2

r(µ
′
Pµ/2σ2).

3. χ2
n(µ

′µ/2) depends upon µ only through µ′µ =
∑n

i=1 µ2
i
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Our next goal is to understand the conditions under which the dif-

ference of two χ2-distributed quadratic forms is χ2 (to be applied to

the ANOVA decomposition of the sum of squares). To get there, we
will need to know when the difference of two projection matrices is a

projection matrix.

Lemma: (Seber & Lee, A6.5). Assume P1 and P2 are projection matri-

ces and P1−P2 is p.s.d. Then (i) P1P2 = P2P1 = P2, and (ii) P1−P2

is a projection matrix.

Property (i) above says that applying both projections (in either order)
is equivalent to just applying P2.

Interpretation:

1. P1 is a projection onto a linear space Ω.

2. P2 is a projection onto a subspace ω of Ω.

3. P1−P2 is a projection onto the orthogonal complement of ω within
Ω.

Example: Projections of (x, y, z)′.

P1 =





1 0 0

0 1 0
0 0 0



projection onto (x, y) plane

P2 =





1 0 0

0 0 0
0 0 0



projection onto x axis

P1 − P2 =





0 0 0

0 1 0

0 0 0



projection onto y axis
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Theorem: Let Y ∼ Nn(θ, σ2
I) and let Q1 = (Y−θ)′P1(Y−

θ)/σ2 and Q2 = (Y − θ)′P2(Y − θ)/σ2 where P1 and P2 are

symmetric n× n matrices. If Qi ∼ χ2
ri

and Q1 −Q2 ≥ 0, then

Q1 − Q2 and Q2 are independent, and Q1 − Q2 ∼ χ2
r1−r2

.

Proof:

Because Qi ∼ χ2
ri
, we know Pi is idempotent by the previous

theorem (Seber & Lee, Thm 2.7), and so a projection matrix.

Because

Q1 − Q2 = (Y − θ)′(P1 −P2)(Y − θ)/σ2 ≥ 0,

we know P1 − P2 is p.s.d. Therefore, by the lemma, P1 − P2

is a projection matrix. Now the previous theorem implies

Q1 − Q2 = (Y − θ)′(P1 − P2)(Y − θ)/σ2 ∼ χ2
r
,

where r = rank(P1 −P2). But

rank(P1 −P2) = rank(P1) − rank(P2),

because rank=trace for projection matrices.

The independence of Q2 and Q1 − Q2 follows from P2(P1 −
P2) = 0. (Check this.) (Seber & Lee, Theorem 2.5)

P2(P1 −P2) = P2P1 − P
2
2 = P2P1 − P2 = 0 by lemma p.7


