EXERCISE: Least-Squares Estimation and Uniqueness of Estimates

1. For *n* real numbers  $a_1, \ldots, a_n$ , what value of *a* minimizes the sum of squared distances from *a* to each of the  $a_i$ :  $\sum_{i=1}^n (a_i - a)^2$ ? (prove)

2. Here are two datasets (given as (x, y)). For each dataset: Sketch a scatterplot of the data. What is the least squares line  $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$ ? That is, what is the line that minimizes the residual sum of squares. What is  $\hat{\mathbf{Y}}$ ? What is  $\hat{\boldsymbol{\beta}}$ ?

Dataset A:  $\{(1,1), (1,2), (1,3), (1,5)\}$ . Dataset B:  $\{(1,1), (-1,2), (1,3), (-1,5)\}$ .

3. For a given dataset and linear model, what do you think is true about least squares estimates? Is  $\hat{\mathbf{Y}}$  always unique? Yes. Is  $\hat{\boldsymbol{\beta}}$  always unique? No.

#### 7.1 Least Squares Estimators

Recall the linear model:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

$$\begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix} = \begin{pmatrix} x_{10} & x_{11} & \cdots & x_{1,p-1} \\ x_{20} & x_{21} & \cdots & x_{2,p-1} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n0} & x_{n1} & \cdots & x_{n,p-1} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

**Definition**: An estimate  $\hat{\boldsymbol{\beta}}$  is a *least-squares estimate* of  $\boldsymbol{\beta}$  if it minimizes the length  $||\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}||$  over all  $\boldsymbol{\beta}$ .

Note: least-squares is a mathematical criterion, not a statistical criterion

Let  $\mathbf{x}_0, \mathbf{x}_1, \ldots, \mathbf{x}_{p-1}$  be the columns of  $\mathbf{X}$ . Then

$$\mathbf{X}\boldsymbol{\beta} = \begin{pmatrix} \mathbf{x}_0 & \mathbf{x}_1 & \cdots & \mathbf{x}_{p-1} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{pmatrix}$$
$$= \beta_0 \mathbf{x}_0 + \beta_1 \mathbf{x}_1 + \dots \beta_{p-1} \mathbf{x}_{p-1}$$
$$\in \mathcal{R}(\mathbf{X}), \text{ the range (column space) of } \mathbf{X}.$$

Questions: Why do we say a least-squares estimate instead of *the* least-squares estimate? If there is more than one least-squares estimate, what is the geometric interpretation?

A least-squares estimate can be found by finding a solution to the following minimization problem:

Minimize 
$$||\mathbf{Y} - \boldsymbol{\theta}||$$
 over  $\boldsymbol{\theta} \in \mathcal{R}(\mathbf{X})$ .

7.2 Orthogonal Projection

Lemma 7.2.1: Y can be uniquely decomposed as

$$\mathbf{Y} = \hat{\mathbf{Y}} + \hat{oldsymbol{arepsilon}}$$

where

$$\hat{\mathbf{Y}} \in \mathcal{R}(\mathbf{X}), \ \widehat{\boldsymbol{\varepsilon}} \in [\mathcal{R}(\mathbf{X})]^{\perp},$$

$$\begin{split} [\mathcal{R}(\mathbf{X})]^{\perp} &= \text{ orthogonal complement of } \mathcal{R}(\mathbf{X}) \\ &= \{\mathbf{a} : \mathbf{X}' \mathbf{a} = \mathbf{0}\} \end{split}$$

**Definition:**  $\hat{\mathbf{Y}}$  is the *orthogonal projection* of  $\mathbf{Y}$  onto  $\mathcal{R}(\mathbf{X})$ . It is also called the *fitted vector* or *vector of fitted values*.



# Proof:

Existence: There must be one such decomposition because  $\mathcal{R}(\mathbf{X})$ and  $[\mathcal{R}(\mathbf{X})]^{\perp}$  span  $\Re^n$ .

Uniqueness: Suppose

$$\mathbf{Y} = \hat{\mathbf{Y}}_1 + \hat{\boldsymbol{\varepsilon}}_1,$$

and

$$\mathbf{Y} = \hat{\mathbf{Y}}_2 + \hat{\boldsymbol{arepsilon}}_2$$

then  $\hat{\mathbf{Y}}_1 - \hat{\mathbf{Y}}_2 + \hat{\boldsymbol{\varepsilon}}_1 - \hat{\boldsymbol{\varepsilon}}_2 = \mathbf{0}$ . Taking the inner product of this vector, we obtain

$$0 = (\hat{\mathbf{Y}}_{1} - \hat{\mathbf{Y}}_{2} + \hat{\boldsymbol{\varepsilon}}_{1} - \hat{\boldsymbol{\varepsilon}}_{2})'(\hat{\mathbf{Y}}_{1} - \hat{\mathbf{Y}}_{2} + \hat{\boldsymbol{\varepsilon}}_{1} - \hat{\boldsymbol{\varepsilon}}_{2})$$
  
$$= ||\hat{\mathbf{Y}}_{1} - \hat{\mathbf{Y}}_{2}||^{2} + ||\hat{\boldsymbol{\varepsilon}}_{1} - \hat{\boldsymbol{\varepsilon}}_{2})||^{2} + 2\underbrace{(\hat{\mathbf{Y}}_{1} - \hat{\mathbf{Y}}_{2})'}_{\in \mathcal{R}(\mathbf{X})}\underbrace{(\hat{\boldsymbol{\varepsilon}}_{1} - \hat{\boldsymbol{\varepsilon}}_{2})}_{\in [\mathcal{R}(\mathbf{X})]^{\perp}}$$
  
$$= ||\hat{\mathbf{Y}}_{1} - \hat{\mathbf{Y}}_{2}||^{2} + ||\hat{\boldsymbol{\varepsilon}}_{1} - \hat{\boldsymbol{\varepsilon}}_{2}||^{2}$$
  
so that  $\hat{\mathbf{Y}}_{1} - \hat{\mathbf{Y}}_{2} = \mathbf{0}$  and  $\hat{\boldsymbol{\varepsilon}}_{1} - \hat{\boldsymbol{\varepsilon}}_{2} = \mathbf{0}.$ 

Lemma 7.2.2: The orthogonal projection solves the least-squares minimization problem.

*Proof:* For any  $\boldsymbol{\theta} \in \mathcal{R}(\mathbf{X})$ ,  $(\mathbf{Y} - \hat{\mathbf{Y}})'(\hat{\mathbf{Y}} - \boldsymbol{\theta}) = 0$ . Therefore,

$$\begin{split} ||\mathbf{Y}-oldsymbol{ heta}||^2 &= ||\mathbf{Y}-\hat{\mathbf{Y}}+\hat{\mathbf{Y}}-oldsymbol{ heta}||^2 \ &= ||\mathbf{Y}-\hat{\mathbf{Y}}||^2+||\hat{\mathbf{Y}}-oldsymbol{ heta}||^2, \end{split}$$

which is minimized by  $\boldsymbol{\theta} = \hat{\mathbf{Y}}$ .



We have just established that the vector in  $\mathcal{R}(\mathbf{X})$  that is closest to  $\mathbf{Y}$  ("closest" according to least-squares) is the projection of  $\mathbf{Y}$  onto  $\mathcal{R}(\mathbf{X})$ .

## 7.3. Normal Equations

Since  $\mathbf{Y} - \hat{\mathbf{Y}} \in [\mathcal{R}(\mathbf{X})]^{\perp}$ , we know that

$$\mathbf{X}'(\mathbf{Y} - \hat{\mathbf{Y}}) = \mathbf{0}.$$

This implies that

$$\mathbf{X}'\mathbf{Y} = \mathbf{X}'\hat{\mathbf{Y}}.$$

Since  $\hat{\mathbf{Y}} \in \mathcal{R}(\mathbf{X})$ , we can write  $\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$ . So we have

$$\mathbf{X}'\mathbf{Y} = \mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}}.$$

We have just proved:

**Lemma 7.3.1**: A least squares estimate of  $\beta$ , denoted  $\hat{\beta}$ , is a solution to the *normal equations*:

$$\mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}'\mathbf{Y}.$$

Note: An alternative derivation of the normal equations uses derivatives to find a minimum of  $||\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}||$  (Seber & Lee, p. 38).

## 7.4. Residual Vector

Definition: The *residual vector* is

$$\hat{\boldsymbol{\varepsilon}} = \mathbf{Y} - \hat{\mathbf{Y}} = \mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}.$$

**Definition**: The *residual sum of squares* is defined by

$$RSS = \hat{\boldsymbol{\varepsilon}}' \hat{\boldsymbol{\varepsilon}}$$
$$= \sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}$$
$$= (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})' (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})$$

## 7.5. The Full Rank Case

If rank $(\mathbf{X}^{n \times p}) = p$ , then **X** has 'full rank' (largest possible assuming  $p \leq n$ ). Then rank $(\mathbf{X}'\mathbf{X}) = p$  (Seber & Lee, A2.4) so  $(\mathbf{X}'\mathbf{X})^{-1}$  exists. In this case the normal equations have the unique solution

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}.$$

The orthogonal projection (fitted vector) is

$$\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} = \mathbf{P}\mathbf{Y},$$

where

$$\mathbf{P} = \mathbf{X} (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}'.$$

Note: **P** is sometimes called the *hat matrix* because  $\mathbf{PY} = \hat{\mathbf{Y}}$ . It is a projection matrix and it projects **Y** onto  $\mathcal{R}(\mathbf{X})$ .

Lemma 7.5.1: Let  $P = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$  where **X** has full rank.

(i)  $\mathbf{P}$  and  $\mathbf{I} - \mathbf{P}$  are projection matrices.

(ii) 
$$\operatorname{rank}(\mathbf{I} - \mathbf{P}) = \operatorname{tr}(\mathbf{I} - \mathbf{P}) = n - p.$$

(iii)  $\mathbf{PX} = \mathbf{X}$ .

Interpretation: **P** is projection onto  $\mathcal{R}(\mathbf{X})$ .  $\mathbf{I} - \mathbf{P}$  is projection onto  $[\mathcal{R}(\mathbf{X})]^{\perp}$ .

For the residual vector we have:

$$\hat{\boldsymbol{\varepsilon}} = \mathbf{Y} - \hat{\mathbf{Y}} = \mathbf{Y} - \mathbf{P}\mathbf{Y} = (\mathbf{I} - \mathbf{P})\mathbf{Y}$$

(Note :  $\hat{\boldsymbol{\varepsilon}} \in [\mathcal{R}(\mathbf{X})]^{\perp}$ ), and for the residual sum of squares we can write:

$$RSS = \hat{\boldsymbol{\varepsilon}}'\hat{\boldsymbol{\varepsilon}} = \mathbf{Y}'(\mathbf{I} - \mathbf{P})\mathbf{Y}.$$

#### 7.6. The Less-Than-Full Rank Case

Lemma: Let rank( $\mathbf{X}$ ) = r < p and  $\mathbf{P} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'$  where  $(\mathbf{X}'\mathbf{X})^{-}$  is a generalized inverse of  $\mathbf{X}'\mathbf{X}$ . Then

(i)  $\mathbf{P}$  and  $\mathbf{I} - \mathbf{P}$  are projection matrices.

(ii) 
$$\operatorname{rank}(\mathbf{I} - \mathbf{P}) = \operatorname{tr}(\mathbf{I} - \mathbf{P}) = n - r.$$

(iii) 
$$\mathbf{X}'(\mathbf{I} - \mathbf{P}) = \mathbf{0}$$
.

Sketch of Proof: There is a unique matrix **P** such that  $\hat{\boldsymbol{\theta}} = \mathbf{P}\mathbf{Y}$  (see Seber & Lee B1.2). One representation for **P** is

 $\mathbf{P} = \mathbf{X}_1 (\mathbf{X}'_1 \mathbf{X}_1)^{-1} \mathbf{X}'_1$  where  $\mathbf{X}_1$  consists of r linearly independent columns  $\mathbf{X}$ .

(i) Show **P** is idempotent and symmetric and therefore a projection matrix.  $\mathbf{P} = \mathbf{X}_1(\mathbf{X}'_1\mathbf{X}_1)^{-1}\mathbf{X}'_1 = \mathbf{P}^2 = \mathbf{P}'$ 

(ii)  $\operatorname{rank}(\mathbf{I} - \mathbf{P}) = \operatorname{tr}(\mathbf{I} - \mathbf{P})$  because  $\mathbf{I} - \mathbf{P}$  is a projection matrix. But

$$\operatorname{tr}(\mathbf{I} - \mathbf{P}) = \operatorname{tr}(\mathbf{I}) - \operatorname{tr}(\mathbf{P}) = n - \operatorname{tr}(\mathbf{P}),$$

 $\operatorname{tr}(\mathbf{P}) = \operatorname{tr}[\mathbf{X}_1(\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{X}_1'] = \operatorname{tr}[(\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{X}_1'\mathbf{X}_1] = \operatorname{tr}(\mathbf{I}_{r \times r}) = r.$ 

(iii) This is equivalent to  $(\mathbf{I} - \mathbf{P})\mathbf{X} = \mathbf{0}$ , or  $\mathbf{P}\mathbf{X} = \mathbf{X}$ . This is clearly true since  $\mathbf{P}\mathbf{x}_j = \mathbf{x}_j$  for every column of  $\mathbf{X}$ , because  $\mathbf{x}_j \in \mathcal{R}(\mathbf{X})$ .