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EXERCISE: Least-Squares Estimation and Uniqueness of Estimates

1. For n real numbers a4, ..., a,, what value of ¢ minimizes the sum of
squared distances from a to each of the a;: Y1 (a; — a)*? (prove)

2. Here are two datasets (given as (z,y)). For each dataset: Sketch a
scatterplot of the data. What is the least squares line y; = o+ 12+ ¢€;7
That is, what is the line that minimizes the residual sum of squares.

What is Y? What is 87
Dataset A: {(1,1),(1,2), (1,3), (1,5)}. Dataset B: {(1,1), (—1,2), (1,3), (—1,5)}.

3. For a given dataset and linear model, what do you think is true
about least squares estimates? Is Y always unique? Yes. Is B always
unique? No.
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7.1 Least Squares Estimators

Recall the linear model:

Y=XB+¢
Y, o i1 - Tip-1 Bo €1
Y5 oo 21 - T2p-1 5 €2
. = . . . : . + .
Yn Tno Tnl - Tnp-1 ﬁp—l En

Definition: An estimate B is a least-squares estimate of 3 if it
minimizes the length ||Y — X3|| over all 3.

Note: least-squares is a mathematical criterion, not a statistical

criterion
Let x¢,x1,...,Xp—1 be the columns of X. Then
Do
_ b
XB = (Xo X1 Xp—l) :
ﬁp—l

= Boxo+ 1x1+ ... Bp_1Xp-1
€ R(X), the range (column space) of X.

Questions: Why do we say a least-squares estimate instead of
the least-squares estimate? If there is more than one least-
squares estimate, what is the geometric interpretation?
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A least-squares estimate can be found by finding a solution to
the following minimization problem:

Minimize ||Y — 6|| over 8 € R(X).

7.2 Orthogonal Projection
Lemma 7.2.1: 'Y can be uniquely decomposed as
Y=Y+é

where
Y € R(X), € € [R(X)]",

[R(X)]* = orthogonal complement of R(X)
= {a:X'a=0}

Definition: Y is the orthogonal projection of Y onto R(X).
It is also called the fitted vector or vector of fitted values.
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Proof:
Existence: There must be one such decomposition because R(X)
and [R(X)]* span R".
Uniqueness: Suppose
Y = Yl + &4,
and
Y =Y+ e,

then Yl — Yg + &1 — &9 = 0. Taking the inner product of this
vector, we obtain
0= (Y1 =Yot+é& —&)Yi—Y,+& —&)
= Y1 = Yol + &1 — &) [P+ 2(Y1 = Yy) (61 — &)

"~ Ve

ER(X) e[R(X)]+

= Y1 — Yo" +[|é1 — &

‘ 2

sothatYl—Y2:Oandé1—é2:O.
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Lemma 7.2.2: The orthogonal projection solves the least-squares
minimization problem.

Proof: For any 8 € R(X), (Y = Y)(Y — 6) = 0. Therefore,

Y -6 = [[Y-Y+Y 96|
= Y =Y +Y -0l

which is minimized by 6 = Y.

We have just established that the vector in R(X) that is closest
to Y (“closest” according to least-squares) is the projection of

Y onto R(X).
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7.3. Normal Equations

Since Y — Y € [R(X)]+, we know that

X'(Y-Y)=0.
This implies that A
XY =X'Y.
Since Y € R(X), we can write Y = X3. So we have
XY = X'X3.
We have just proved:

Lemma 7.3.1: A least squares estimate of (3, denoted B, is a
solution to the normal equations:

X'X3=X'Y.

Note: An alternative derivation of the normal equations uses
derivatives to find a minimum of ||Y — X3|| (Seber & Lee, p.
38).
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7.4. Residual Vector

Definition: The residual vector is
E=Y-Y=Y-X3.

Definition: The restdual sum of squares is defined by

RSS = é'e

n

I
M>

Il
—_

)(Y —XB)

I}

Y - X

M~ .
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7.5. The Full Rank Case

If rank(X"*?) = p, then X has ‘full rank’ (largest possible
assuming p < m). Then rank(X'X) = p (Seber & Lee, A2.4)
so (X'X)~! exists. In this case the normal equations have the
unique solution

B =(X'X)'X'Y.

The orthogonal projection (fitted vector) is
Y = X8 = X(X'X)"'X'Y = PY,

where

P = X(X'X) X'
Note: P is sometimes called the hat matriz because PY =Y.
It is a projection matrix and it projects Y onto R(X).
Lemma 7.5.1: Let P = X(X'X) !X’ where X has full rank.
(i) P and I — P are projection matrices.
(ii) rank(I = P) =tr(I - P) =n — p.
(iii) PX = X.
Interpretation: P is projection onto R(X). I— P is projection
onto [R(X)]*.

For the residual vector we have:
E=Y-Y=Y-PY=(I-PY

(Note : € € [R(X)]*), and for the residual sum of squares we
can write:

RSS=ée=Y'1-P)Y.
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7.6. The Less-Than-Full Rank Case

Lemma: Let rank(X) = r < p and P = X(X'X)~ X" where
(X’X)™ is a generalized inverse of X'X.

Then

(i) P and I — P are projection matrices.

(ii) rank(I = P) =tr(I —P) =n —r.

(iii) X/(I - P) = 0.

Sketch of Proof: There is a unique matrix P such that 0 =PY
(see Seber & Lee B1.2). One representation for P is

P = X (X} X)X/ where X; consists of r linearly indepen-
dent columns X.

(i) Show P is idempotent and symmetric and therefore a pro-
jection matrix. P = X (X/X,) X} = P? = P’
(ii) rank(I — P) = tr(I — P) because I — P is a projection
matrix. But

tr(I — P) = tr(I) — tr(P) = n — tr(P),
tr(P) = tr[X(X) X)X = tr[(X) X)X X = tr(Lyg) =7

(iii) This is equivalent to (I — P)X = 0, or PX = X. This
is clearly true since Px; = x; for every column of X, because
X; € R(X)



