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EXERCISE: Least-Squares Estimation and Uniqueness of Estimates

1. For n real numbers a1, . . . , an, what value of a minimizes the sum of

squared distances from a to each of the ai:
∑

n

i=1
(ai − a)2? (prove)

2. Here are two datasets (given as (x, y)). For each dataset: Sketch a

scatterplot of the data. What is the least squares line yi = β0+β1xi+εi?
That is, what is the line that minimizes the residual sum of squares.

What is Ŷ? What is β̂?

Dataset A: {(1, 1), (1, 2), (1, 3), (1, 5)}. Dataset B: {(1, 1), (−1, 2), (1, 3), (−1, 5)}.

3. For a given dataset and linear model, what do you think is true
about least squares estimates? Is Ŷ always unique? Yes. Is β̂ always

unique? No.
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7.1 Least Squares Estimators

Recall the linear model:

Y = Xβ + ε




Y1

Y2
...

Yn




=





x10 x11 · · · x1,p−1

x20 x21 · · · x2,p−1
... ... ... ...

xn0 xn1 · · · xn,p−1









β0

β1
...

βp−1




+





ε1

ε2
...

εn





Definition: An estimate β̂ is a least-squares estimate of β if it

minimizes the length ||Y −Xβ|| over all β.

Note: least-squares is a mathematical criterion, not a statistical

criterion

Let x0,x1, . . . ,xp−1 be the columns of X. Then

Xβ =
(
x0 x1 · · · xp−1

)





β0

β1
...

βp−1





= β0x0 + β1x1 + . . . βp−1xp−1

∈ R(X), the range (column space) of X.

Questions: Why do we say a least-squares estimate instead of

the least-squares estimate? If there is more than one least-

squares estimate, what is the geometric interpretation?
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A least-squares estimate can be found by finding a solution to

the following minimization problem:

Minimize ||Y − θ|| over θ ∈ R(X).

7.2 Orthogonal Projection

Lemma 7.2.1: Y can be uniquely decomposed as

Y = Ŷ + ε̂

where

Ŷ ∈ R(X), ε̂ ∈ [R(X)]⊥,

[R(X)]⊥ = orthogonal complement of R(X)

= {a : X′
a = 0}

Definition: Ŷ is the orthogonal projection of Y onto R(X).
It is also called the fitted vector or vector of fitted values.
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Proof:

Existence: There must be one such decomposition becauseR(X)

and [R(X)]⊥ span <n.

Uniqueness: Suppose

Y = Ŷ1 + ε̂1,

and

Y = Ŷ2 + ε̂2.

then Ŷ1 − Ŷ2 + ε̂1 − ε̂2 = 0. Taking the inner product of this

vector, we obtain

0 = (Ŷ1 − Ŷ2 + ε̂1 − ε̂2)
′(Ŷ1 − Ŷ2 + ε̂1 − ε̂2)

= ||Ŷ1 − Ŷ2||
2 + ||ε̂1 − ε̂2)||

2 + 2 (Ŷ1 − Ŷ2)
′

︸ ︷︷ ︸
∈R(X)

(ε̂1 − ε̂2)︸ ︷︷ ︸
∈[R(X)]⊥

= ||Ŷ1 − Ŷ2||
2 + ||ε̂1 − ε̂2||

2

so that Ŷ1 − Ŷ2 = 0 and ε̂1 − ε̂2 = 0.
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Lemma 7.2.2: The orthogonal projection solves the least-squares

minimization problem.

Proof: For any θ ∈ R(X), (Y − Ŷ)′(Ŷ − θ) = 0. Therefore,

||Y − θ||2 = ||Y − Ŷ + Ŷ − θ||2

= ||Y − Ŷ||2 + ||Ŷ − θ||2,

which is minimized by θ = Ŷ.
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Y − Ŷ

θ

We have just established that the vector in R(X) that is closest

to Y (“closest” according to least-squares) is the projection of

Y onto R(X).
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7.3. Normal Equations

Since Y − Ŷ ∈ [R(X)]⊥, we know that

X
′(Y − Ŷ) = 0.

This implies that

X
′
Y = X

′
Ŷ.

Since Ŷ ∈ R(X), we can write Ŷ = Xβ̂. So we have

X
′
Y = X

′
Xβ̂.

We have just proved:

Lemma 7.3.1: A least squares estimate of β, denoted β̂, is a

solution to the normal equations :

X
′
Xβ̂ = X

′
Y.

Note: An alternative derivation of the normal equations uses

derivatives to find a minimum of ||Y − Xβ|| (Seber & Lee, p.

38).
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7.4. Residual Vector

Definition: The residual vector is

ε̂ = Y − Ŷ = Y − Xβ̂.

Definition: The residual sum of squares is defined by

RSS = ε̂′ε̂

=

n∑

i=1

ε̂2
i

= (Y −Xβ̂)′(Y − Xβ̂)
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7.5. The Full Rank Case

If rank(Xn×p) = p, then X has ‘full rank’ (largest possible

assuming p ≤ n). Then rank(X′
X) = p (Seber & Lee, A2.4)

so (X′
X)−1 exists. In this case the normal equations have the

unique solution

β̂ = (X′
X)−1

X
′
Y.

The orthogonal projection (fitted vector) is

Ŷ = Xβ̂ = X(X′
X)−1

X
′
Y = PY,

where

P = X(X′
X)−1

X
′.

Note: P is sometimes called the hat matrix because PY = Ŷ.

It is a projection matrix and it projects Y onto R(X).

Lemma 7.5.1: Let P = X(X′
X)−1

X
′ where X has full rank.

(i) P and I − P are projection matrices.

(ii) rank(I − P) = tr(I − P) = n − p.

(iii) PX = X.

Interpretation: P is projection onto R(X). I−P is projection

onto [R(X)]⊥.

For the residual vector we have:

ε̂ = Y − Ŷ = Y −PY = (I − P)Y

(Note : ε̂ ∈ [R(X)]⊥), and for the residual sum of squares we

can write:

RSS = ε̂′ε̂ = Y
′(I − P)Y.
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7.6. The Less-Than-Full Rank Case

Lemma: Let rank(X) = r < p and P = X(X′
X)−X

′ where

(X′
X)− is a generalized inverse of X

′
X.

Then

(i) P and I −P are projection matrices.

(ii) rank(I − P) = tr(I − P) = n − r.

(iii) X
′(I − P) = 0.

Sketch of Proof: There is a unique matrix P such that θ̂ = PY

(see Seber & Lee B1.2). One representation for P is

P = X1(X
′
1X1)

−1
X

′
1 where X1 consists of r linearly indepen-

dent columns X.

(i) Show P is idempotent and symmetric and therefore a pro-

jection matrix. P = X1(X
′
1X1)

−1
X

′
1 = P

2 = P
′

(ii) rank(I − P) = tr(I − P) because I − P is a projection

matrix. But

tr(I − P) = tr(I) − tr(P) = n − tr(P),

tr(P) = tr[X1(X
′
1X1)

−1
X

′
1] = tr[(X′

1X1)
−1

X
′
1X1] = tr(Ir×r) = r.

(iii) This is equivalent to (I − P)X = 0, or PX = X. This

is clearly true since Pxj = xj for every column of X, because

xj ∈ R(X).


