7. LEAST SQUARES ESTIMATION 1

EXERCISE: Least-Squares Estimation and Uniqueness of Estimates

1. For *n* real numbers a_1, \ldots, a_n , what value of *a* minimizes the sum of squared distances from a to each of the a_i : $\sum_{i=1}^n (a_i - a)^2$? (prove)

2. Here are two datasets (given as (x, y)). For each dataset: Sketch a scatterplot of the data. What is the least squares line $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$? That is, what is the line that minimizes the residual sum of squares. What is $\hat{\mathbf{Y}}$? What is $\hat{\boldsymbol{\beta}}$?

Dataset A: $\{(1, 1), (1, 2), (1, 3), (1, 5)\}.$ Dataset B: $\{(1, 1), (-1, 2), (1, 3), (-1, 5)\}.$

3. For a given dataset and linear model, what do you think is true about least squares estimates? Is \hat{Y} always unique? Yes. Is $\hat{\beta}$ always unique? No.

7.1 Least Squares Estimators

Recall the linear model:

$$
\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}
$$
\n
$$
\begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix} = \begin{pmatrix} x_{10} & x_{11} & \cdots & x_{1,p-1} \\ x_{20} & x_{21} & \cdots & x_{2,p-1} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n0} & x_{n1} & \cdots & x_{n,p-1} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}
$$

Definition: An estimate $\hat{\boldsymbol{\beta}}$ is a *least-squares estimate* of $\boldsymbol{\beta}$ if it minimizes the length $||\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}||$ over all $\boldsymbol{\beta}$.

Note: least-squares is a mathematical criterion, not a statistical criterion

Let $\mathbf{x}_0, \mathbf{x}_1, \ldots, \mathbf{x}_{p-1}$ be the columns of **X**. Then

$$
\mathbf{X}\boldsymbol{\beta} = (\mathbf{x}_0 \ \mathbf{x}_1 \ \cdots \ \mathbf{x}_{p-1}) \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{pmatrix}
$$

= $\beta_0 \mathbf{x}_0 + \beta_1 \mathbf{x}_1 + \dots + \beta_{p-1} \mathbf{x}_{p-1}$
 $\in \mathcal{R}(\mathbf{X}),$ the range (column space) of **X**.

Questions: Why do we say α least-squares estimate instead of the least-squares estimate? If there is more than one leastsquares estimate, what is the geometric interpretation?

A least-squares estimate can be found by finding a solution to the following minimization problem:

Minimize
$$
||\mathbf{Y} - \boldsymbol{\theta}||
$$
 over $\boldsymbol{\theta} \in \mathcal{R}(\mathbf{X})$.

7.2 Orthogonal Projection

Lemma 7.2.1: \mathbf{Y} can be uniquely decomposed as

$$
\mathbf{Y} = \hat{\mathbf{Y}} + \hat{\boldsymbol{\varepsilon}}
$$

where

$$
\hat{\mathbf{Y}} \in \mathcal{R}(\mathbf{X}), \ \hat{\boldsymbol{\varepsilon}} \in [\mathcal{R}(\mathbf{X})]^{\perp},
$$

 $[\mathcal{R}(\mathbf{X})]^{\perp}$ = orthogonal complement of $\mathcal{R}(\mathbf{X})$ $= \{a : X'a = 0\}$

Definition: $\hat{\mathbf{Y}}$ is the *orthogonal projection* of **Y** onto $\mathcal{R}(\mathbf{X})$. It is also called the *fitted vector* or vector of *fitted values*.

Proof:

Existence: There must be one such decomposition because $\mathcal{R}(\mathbf{X})$ and $[\mathcal{R}(\mathbf{X})]^{\perp}$ span \mathbb{R}^{n} .

Uniqueness: Suppose

$$
\mathbf{Y} = \hat{\mathbf{Y}}_1 + \hat{\boldsymbol{\varepsilon}}_1,
$$

and

$$
\mathbf{Y}=\hat{\mathbf{Y}}_2+\hat{\boldsymbol{\varepsilon}}_2.
$$

then $\hat{\mathbf{Y}}_1 - \hat{\mathbf{Y}}_2 + \hat{\boldsymbol{\varepsilon}}_1 - \hat{\boldsymbol{\varepsilon}}_2 = \mathbf{0}$. Taking the inner product of this vector, we obtain

$$
0 = (\hat{\mathbf{Y}}_1 - \hat{\mathbf{Y}}_2 + \hat{\boldsymbol{\varepsilon}}_1 - \hat{\boldsymbol{\varepsilon}}_2)'(\hat{\mathbf{Y}}_1 - \hat{\mathbf{Y}}_2 + \hat{\boldsymbol{\varepsilon}}_1 - \hat{\boldsymbol{\varepsilon}}_2)
$$

\n
$$
= ||\hat{\mathbf{Y}}_1 - \hat{\mathbf{Y}}_2||^2 + ||\hat{\boldsymbol{\varepsilon}}_1 - \hat{\boldsymbol{\varepsilon}}_2)||^2 + 2(\hat{\mathbf{Y}}_1 - \hat{\mathbf{Y}}_2)'(\hat{\boldsymbol{\varepsilon}}_1 - \hat{\boldsymbol{\varepsilon}}_2)
$$

\n
$$
= ||\hat{\mathbf{Y}}_1 - \hat{\mathbf{Y}}_2||^2 + ||\hat{\boldsymbol{\varepsilon}}_1 - \hat{\boldsymbol{\varepsilon}}_2||^2
$$

\nso that $\hat{\mathbf{Y}}_1 - \hat{\mathbf{Y}}_2 = \mathbf{0}$ and $\hat{\boldsymbol{\varepsilon}}_1 - \hat{\boldsymbol{\varepsilon}}_2 = \mathbf{0}$.

Lemma 7.2.2: The orthogonal projection solves the least-squares minimization problem.

Proof: For any $\theta \in \mathcal{R}(\mathbf{X})$, $(\mathbf{Y} - \hat{\mathbf{Y}})'(\hat{\mathbf{Y}} - \theta) = 0$. Therefore,

$$
||\mathbf{Y} - \boldsymbol{\theta}||^2 = ||\mathbf{Y} - \hat{\mathbf{Y}} + \hat{\mathbf{Y}} - \boldsymbol{\theta}||^2
$$

=
$$
||\mathbf{Y} - \hat{\mathbf{Y}}||^2 + ||\hat{\mathbf{Y}} - \boldsymbol{\theta}||^2,
$$

which is minimized by $\boldsymbol{\theta} = \hat{\mathbf{Y}}$.

We have just established that the vector in $\mathcal{R}(\mathbf{X})$ that is closest to $\mathbf Y$ ("closest" according to least-squares) is the projection of Y onto $\mathcal{R}(\mathbf{X})$.

7.3. Normal Equations

Since $\mathbf{Y} - \hat{\mathbf{Y}} \in [\mathcal{R}(\mathbf{X})]^{\perp}$, we know that

$$
\mathbf{X}'(\mathbf{Y} - \hat{\mathbf{Y}}) = \mathbf{0}.
$$

This implies that

$$
\mathbf{X'Y}=\mathbf{X'}\hat{\mathbf{Y}}.
$$

Since $\hat{\mathbf{Y}} \in \mathcal{R}(\mathbf{X})$, we can write $\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$. So we have

$$
\mathbf{X}'\mathbf{Y} = \mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}}.
$$

We have just proved:

Lemma 7.3.1: A least squares estimate of β , denoted $\hat{\beta}$, is a solution to the normal equations:

$$
\mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}'\mathbf{Y}.
$$

Note: An alternative derivation of the normal equations uses derivatives to find a minimum of $||\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}||$ (Seber & Lee, p. 38).

7.4. Residual Vector

Definition: The residual vector is

$$
\hat{\boldsymbol{\varepsilon}} = \mathbf{Y} - \hat{\mathbf{Y}} = \mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}.
$$

Definition: The residual sum of squares is defined by

$$
RSS = \hat{\epsilon}' \hat{\epsilon}
$$

=
$$
\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}
$$

=
$$
(\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})'(\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})
$$

7.5. The Full Rank Case

If rank $(X^{n\times p}) = p$, then **X** has 'full rank' (largest possible assuming $p \leq n$). Then rank $(\mathbf{X}'\mathbf{X}) = p$ (Seber & Lee, A2.4) so $(X'X)^{-1}$ exists. In this case the normal equations have the unique solution

$$
\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}.
$$

The orthogonal projection (fitted vector) is

$$
\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} = \mathbf{P}\mathbf{Y},
$$

where

$$
\mathbf{P} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'.
$$

Note: **P** is sometimes called the *hat matrix* because $\mathbf{PY} = \hat{\mathbf{Y}}$. It is a projection matrix and it projects Y onto $\mathcal{R}(\mathbf{X})$.

Lemma 7.5.1: Let $P = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$ where **X** has full rank.

(i) **P** and $\mathbf{I} - \mathbf{P}$ are projection matrices.

(ii) rank
$$
(\mathbf{I} - \mathbf{P}) = \text{tr}(\mathbf{I} - \mathbf{P}) = n - p
$$
.

(iii) $\mathbf{PX} = \mathbf{X}$.

Interpretation: P is projection onto $\mathcal{R}(X)$. **I**-P is projection onto $[\mathcal{R}(\mathbf{X})]^\perp$.

For the residual vector we have:

$$
\hat{\boldsymbol{\varepsilon}} = \mathbf{Y} - \hat{\mathbf{Y}} = \mathbf{Y} - \mathbf{P}\mathbf{Y} = (\mathbf{I} - \mathbf{P})\mathbf{Y}
$$

(Note : $\hat{\boldsymbol{\varepsilon}} \in [\mathcal{R}(\mathbf{X})]^{\perp}$), and for the residual sum of squares we can write:

$$
RSS = \hat{\varepsilon}' \hat{\varepsilon} = \mathbf{Y}' (\mathbf{I} - \mathbf{P}) \mathbf{Y}.
$$

7.6. The Less-Than-Full Rank Case

Lemma: Let $rank(X) = r < p$ and $P = X(X'X)^{-}X'$ where $(X'X)^-$ is a generalized inverse of $X'X$. Then

(i) **P** and $I - P$ are projection matrices.

(ii) rank
$$
(\mathbf{I} - \mathbf{P}) = \text{tr}(\mathbf{I} - \mathbf{P}) = n - r
$$
.

(iii)
$$
\mathbf{X}'(\mathbf{I} - \mathbf{P}) = 0
$$
.

Sketch of Proof: There is a unique matrix **P** such that $\hat{\boldsymbol{\theta}} = \mathbf{PY}$ (see Seber & Lee B1.2). One representation for P is

 $\mathbf{P} = \mathbf{X}_1 (\mathbf{X}_1' \mathbf{X}_1)^{-1} \mathbf{X}_1'$ where \mathbf{X}_1 consists of r linearly independent columns X.

(i) Show P is idempotent and symmetric and therefore a projection matrix. $\mathbf{P} = \mathbf{X}_1 (\mathbf{X}_1' \mathbf{X}_1)^{-1} \mathbf{X}_1' = \mathbf{P}^2 = \mathbf{P}'$

(ii) rank($\mathbf{I} - \mathbf{P}$) = tr($\mathbf{I} - \mathbf{P}$) because $\mathbf{I} - \mathbf{P}$ is a projection matrix. But

$$
\text{tr}(\mathbf{I} - \mathbf{P}) = \text{tr}(\mathbf{I}) - \text{tr}(\mathbf{P}) = n - \text{tr}(\mathbf{P}),
$$

 $tr(\mathbf{P}) = tr[\mathbf{X}_1(\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{X}_1'] = tr[(\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{X}_1'\mathbf{X}_1] = tr(\mathbf{I}_{r \times r}) = r.$

(iii) This is equivalent to $(I - P)X = 0$, or $PX = X$. This is clearly true since $\mathbf{P} \mathbf{x}_j = \mathbf{x}_j$ for every column of \mathbf{X} , because $\mathbf{x}_j \in \mathcal{R}(\mathbf{X}).$