Basic Distributional Assumptions of the Linear Model:

- 1. The errors are unbiased: $E[\varepsilon] = 0$.
- 2. The errors are uncorrelated with common variance:

$$
cov(\boldsymbol{\varepsilon}) = \sigma^2 \mathbf{I}.
$$

These assumptions imply that

$$
E[\mathbf{Y}] = E[\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}] = \mathbf{X}\boldsymbol{\beta},
$$

$$
cov(\mathbf{Y}) = cov(\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}) = \text{cov}(\boldsymbol{\varepsilon}) = \sigma^2 \mathbf{I}.
$$

 $*$ when X is considered fixed, not random

Results for the full rank case: Under the above assumptions, we have the following results.

1. The least squares estimate is unbiased:

$$
E[\hat{\boldsymbol{\beta}}] = E[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}]
$$

= $(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'E[\mathbf{Y}]$
= $(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\boldsymbol{\beta}$
= $\boldsymbol{\beta}$.

2. The covariance matrix of the least squares estimate is

$$
cov(\hat{\boldsymbol{\beta}}) = cov[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}]
$$

\n
$$
= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'cov(\mathbf{Y})\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}
$$

\n
$$
= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\sigma^2\mathbf{I}\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}
$$

\n
$$
= \sigma^2(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}
$$

\n
$$
= \sigma^2(\mathbf{X}'\mathbf{X})^{-1}
$$

Note that we have NOT yet assumed that errors are normally distributed.

Optimality of Least-Squares Estimates:

In general, $\hat{\boldsymbol{\beta}}$ is not unique so we consider the properties of $\hat{\theta}$, which is unique. This is an unbiased estimate of the mean vector of **Y** $(\boldsymbol{\theta} = E[\mathbf{Y}] = \mathbf{X}\boldsymbol{\beta})$:

$$
E[\hat{\theta}] = E[PY]
$$

= $PE[Y]$
= $PX\beta$
= $X\beta$ because $PX = X$
= θ

The next result shows that $\hat{\theta}$ is optimal in the sense of having minimum variance among all linear unbiased estimators. This result is the basis of the Gauss-Markov theorem on the estimation of estimable functions, which we will study in a later lecture.

Theorem: Let $\hat{\theta}$ be the least-squares estimate of θ . For any linear combination $\mathbf{c}'\mathbf{\theta}$, $\mathbf{c}'\hat{\mathbf{\theta}}$ is (uniquely) the estimate with minimum variance among all linear unbiased estimates. We call $\mathbf{c}'\hat{\boldsymbol{\theta}}$ the BLUE (Best Linear Unbiased Estimate) of $\mathbf{c}'\boldsymbol{\theta}$.

Proof: Since $\hat{\boldsymbol{\theta}}$ is unbiased, we have that $E[\mathbf{c}'\hat{\boldsymbol{\theta}}] = \mathbf{c}'\boldsymbol{\theta}$, so $\mathbf{c}'\hat{\boldsymbol{\theta}}$ is a linear unbiased estimate of $\mathbf{c}'\boldsymbol{\theta}$.

Let $d'Y$ be any other linear unbiased estimate. Unbiasedness implies that $E[\mathbf{d}'\mathbf{Y}] = \mathbf{c}'\boldsymbol{\theta}$; we also know that $E[\mathbf{d}'\mathbf{Y}] = \mathbf{d}'\boldsymbol{\theta}$. Therefore $\mathbf{d}'\boldsymbol{\theta} = \mathbf{c}'\boldsymbol{\theta}$. Now, $\boldsymbol{\theta}$ is a vector in $\mathcal{R}(\mathbf{X})$ – we do not know what $\boldsymbol{\theta}$ is, but regardless of its value $\mathbf{d}'\boldsymbol{\theta} = \mathbf{c}'\boldsymbol{\theta}$. Therefore, $d'\theta = c'\theta$ for all $\theta \in \mathcal{R}(X)$.

It follows immediately that $(c - d)/\theta = 0$ for all $\theta \in \mathcal{R}(X)$, so **c** − **d** is orthogonal to $\mathcal{R}(\mathbf{X})$. Therefore, $\mathbf{P}(\mathbf{c} - \mathbf{d}) = \mathbf{0}$ and $\mathbf{Pc} = \mathbf{Pd}$. Now $\text{var}(\mathbf{c}'\hat{\boldsymbol{\theta}}) =$

$$
\begin{aligned}\n\text{var}(\mathbf{c}'\hat{\boldsymbol{\theta}}) &= \text{var}(\mathbf{c}'\mathbf{P}\mathbf{Y}) \\
&= \text{var}([\mathbf{Pc}]'\mathbf{Y}) \\
&= \text{var}([\mathbf{Pd}]'\mathbf{Y}) \\
&= \sigma^2(\mathbf{Pd})'\mathbf{Pd} \\
&= \sigma^2\mathbf{d}'\mathbf{Pd},\n\end{aligned}
$$

and $\text{var}(\mathbf{d}'\mathbf{Y}) = \sigma^2 \mathbf{d}'\mathbf{d}.$ Then $\text{var}(\mathbf{d}'\mathbf{Y}) - \text{var}(\mathbf{c}'\hat{\boldsymbol{\theta}}) =$ $\text{var}(\mathbf{d}'\mathbf{Y}) - \text{var}(\mathbf{c}'\hat{\boldsymbol{\theta}})$ = $\sigma^2\mathbf{d}'\mathbf{d} - \sigma^2\mathbf{d}'\mathbf{P}\mathbf{d}$ $\qquad \qquad = \ \sigma^2 {\bf d}' ({\bf I}-{\bf P}) {\bf d}$ $= \sigma^2 \mathbf{d}'(\mathbf{I} - \mathbf{P})^2 \mathbf{d}$ $= \sigma^2 [(\mathbf{I} - \mathbf{P}) \mathbf{d}]' (\mathbf{I} - \mathbf{P}) \mathbf{d}$ ≥ 0, establishing minimum variance.

Note var($\mathbf{d}'\mathbf{Y}$) – var $(c'\hat{\boldsymbol{\theta}}) = 0$ if and only if $(\mathbf{I} - \mathbf{P})\mathbf{d} = \mathbf{0}$, i.e., $\mathbf{d} = \mathbf{P} \mathbf{d} = \mathbf{P} \mathbf{c}$, i.e., $\mathbf{d}' \mathbf{Y} = (\mathbf{P} \mathbf{c})' \mathbf{Y} = \mathbf{c}' \mathbf{P} \mathbf{Y} = \mathbf{c}' \hat{\boldsymbol{\theta}}$. Establishing uniqueness.

Corollary: If rank $(\mathbf{X}_{n\times p}) = p$, then $\mathbf{a}'\hat{\boldsymbol{\beta}}$ is the BLUE of $\mathbf{a}'\boldsymbol{\beta}$ for any a.

Proof: Note that $\text{rank}(\mathbf{X}_{n\times p}) = p$ implies that $\mathbf{X}'\mathbf{X}$ is invertible because $rank(\mathbf{X}'\mathbf{X}) = rank(\mathbf{X})$ (Seber & Lee, A2.4). We have

 $\mathbf{a}'\boldsymbol{\beta} = \mathbf{a}'I\boldsymbol{\beta} = \mathbf{a}'$ insert $\overbrace{ }$ $\overbrace{$ $\hat{\mathbf{X}}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\hat{\mathbf{X}}\boldsymbol{\beta} = \mathbf{a}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$ $=\!\mathbf{X}\boldsymbol{\beta}$ $\frac{1}{2}$ $\hat{\boldsymbol{\theta}}^{\bullet} = \mathbf{c}^{\prime} \boldsymbol{\theta}$

where $\mathbf{c}' = \mathbf{a}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$. Also,

$$
\mathbf{a}'\hat{\boldsymbol{\beta}} = \mathbf{a}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{a}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\hat{\boldsymbol{\theta}} = \mathbf{c}'\hat{\boldsymbol{\theta}}
$$

By the theorem, $\mathbf{c}'\hat{\boldsymbol{\theta}}$ is the BLUE of $\mathbf{c}'\boldsymbol{\theta}$.

Note: The Gauss-Markov theorem generalizes the above result to the less-than-full-rank case. In the less-than-full-rank case, we will have to be more careful. Remember that $\hat{\boldsymbol{\beta}}$ is not unique, so it does not even make sense to say that $\hat{\boldsymbol{\beta}}$ is optimal in any sense.

Estimation of σ^2 .

Let rank $(X) = r$. Define

$$
S^{2} = \frac{1}{n-r} (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})'(\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}) = \frac{RSS}{n-r}
$$

This is a generalization of the sample variance.

 S^2 is an *unbiased* estimate of σ^2 . This is proved by writing

$$
(n-r)S^2 = RSS = \mathbf{Y}'(\mathbf{I} - \mathbf{P})\mathbf{Y},
$$

and applying the general result on expectation of quadratic forms (Lecture 3, p. 6), and using $cov(\mathbf{Y}) = \sigma^2 \mathbf{I}$:

 $E[\mathbf{X}'\mathbf{A}\mathbf{X}] = \text{tr}(\mathbf{A}\mathbf{\Sigma}) + \boldsymbol{\mu}'\mathbf{A}\boldsymbol{\mu}.$

$$
E[\mathbf{Y}'(\mathbf{I} - \mathbf{P})\mathbf{Y}] = \text{tr}(\sigma^2 \mathbf{I}(\mathbf{I} - \mathbf{P})) + \boldsymbol{\theta}'(\mathbf{I} - \mathbf{P})\boldsymbol{\theta}
$$

= $\sigma^2 \text{tr}(\mathbf{I} - \mathbf{P}) + \boldsymbol{\theta}'(\mathbf{I} - \mathbf{P})\boldsymbol{\theta}$
= $\sigma^2(n-r) + \boldsymbol{\beta}'\mathbf{X}'(\mathbf{I} - \mathbf{P})\mathbf{X}\boldsymbol{\beta}$
= $\sigma^2(n-r)$ because $(\mathbf{I} - \mathbf{P})\mathbf{X} = \mathbf{0}$

Therefore $E[S^2] = \sigma^2$.

Note: S^2 also has a minimum variance optimality property (Seber & Lee Thm 3.4). But the primary interest is in β and the estimate of σ^2 is used primarily to determine the standard errors for $\hat{\boldsymbol{\beta}}$.

.

Distributional Theory:

Normality Assumption: In addition to the assumptions $E[\epsilon] = 0$ and $cov(\boldsymbol{\varepsilon}) = \sigma^2 \mathbf{I}$, we now also assume that $\boldsymbol{\varepsilon}$ has a multivariate normal distribution, i.e.,

$$
\boldsymbol{\varepsilon} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I}).
$$

This immediately implies that $\mathbf{Y} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}).$

Theorem: (Seber & Lee Thm 3.5). Let $\mathbf{Y} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I})$, where $\text{rank}(\mathbf{X}_{n \times p}) = p$. Then (i) $\hat{\boldsymbol{\beta}} \sim N_p(\boldsymbol{\beta}, \sigma^2(\mathbf{X}'\mathbf{X})^{-1}).$ (ii) $(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})'(\mathbf{X}'\mathbf{X})(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})/\sigma^2 \sim \chi_p^2$ p . (iii) $\hat{\boldsymbol{\beta}}$ is independent of S^2 . (iv) $RSS/\sigma^2 = (n-p)S^2/\sigma^2 \sim \chi^2_n$ 2
n−p·

Proof: (i) $\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$ is multivariate normal by Seber $&$ Lee Thm 2.2 (Lecture 4, p. 6). The mean and variance were derived previously.

 (ii)

 $\hat{B}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})'(\mathbf{X}'\mathbf{X})(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})/\sigma^2=(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})'[\text{cov}(\hat{\boldsymbol{\beta}})]^{-1}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})\sim \chi^2_{p}$ p , by a previous theorem (Lecture 6, p. 4).

If $\mathbf{Y} \sim N_n(\boldsymbol{\theta}, \boldsymbol{\Sigma})$ and $\boldsymbol{\Sigma}$ is p.d., then $(\mathbf{Y}-\boldsymbol{\theta})'\boldsymbol{\Sigma}^{-1}(\mathbf{Y}-\boldsymbol{\theta}) \sim \chi^2_n$ $\frac{2}{n}$. (iii)

$$
cov(\hat{\boldsymbol{\beta}}, \mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}) = cov((\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}, (\mathbf{I} - \mathbf{P})\mathbf{Y})
$$

\n
$$
= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'cov(\mathbf{Y}, \mathbf{Y})(\mathbf{I} - \mathbf{P})'
$$

\n
$$
= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\sigma^2\mathbf{I}(\mathbf{I} - \mathbf{P})'
$$

\n
$$
= \sigma^2(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\mathbf{I} - \mathbf{P})
$$

\n
$$
= 0,
$$

because $\mathbf{X}'(\mathbf{I} - \mathbf{P}) = \mathbf{0}$ (Lemma, p. 2)

 (iv)

We will use the previous lemma (Lecture 6, p. 8) that states:

- $\mathbf{Y} \sim N(\boldsymbol{\theta}, \sigma^2 \mathbf{I})$
- P_1 , P_2 symmetric matrices
- \bullet $Q_1 = (\mathbf{Y} \boldsymbol{\theta})'\mathbf{P}_1(\mathbf{Y} \boldsymbol{\theta})/\sigma^2 \sim \chi^2_r$ r_1
- \bullet $Q_2 = (\mathbf{Y} \boldsymbol{\theta})'\mathbf{P}_2(\mathbf{Y} \boldsymbol{\theta})/\sigma^2 \sim \chi^2_r$ r_2
- $Q_1 Q_2 \geq 0$

 $\Rightarrow Q_1 - Q_2 \sim \chi^2_r$ $_{r_1-r_2}^2$. \Box For the proof of (iv),

$$
Q_1 \equiv ||\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}||^2 / \sigma^2 = (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) / \sigma^2 \sim \chi_n^2,
$$

by a general previous result.

$$
Q_2 \equiv ||\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})||^2 / \sigma^2 = (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})'\mathbf{X}'\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})/\sigma^2 \sim \chi_p^2,
$$

by part (ii) of this theorem.

$$
Q \equiv ||\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}||^2 / \sigma^2 = RSS / \sigma^2.
$$

Our goal to prove the distribution of Q is χ^2_n n^2 _{n−p}. First, we show that $Q_1 = Q + Q_2$, i.e. $Q_1 - Q = Q_2$.

Note that:

$$
\sigma^2 Q = RSS = \mathbf{Y}'(\mathbf{I} - \mathbf{P})\mathbf{Y} = (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{I} - \mathbf{P})(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}),
$$

because $(\mathbf{I} - \mathbf{P})\mathbf{X} = \mathbf{0}$. So

$$
\sigma^2 (Q_1 - Q) = (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) - (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{I} - \mathbf{P})(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})
$$

$$
= (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{I} - \mathbf{I} + \mathbf{P})(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})
$$

$$
= (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})' \mathbf{P}(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})
$$

$$
= (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})' \mathbf{P}' \mathbf{P}(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})
$$

$$
= (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})' (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})
$$

$$
= (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})' (\mathbf{X}\boldsymbol{\beta} - \mathbf{X}\boldsymbol{\beta})
$$

$$
= (\mathbf{X}\boldsymbol{\beta} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{X}\boldsymbol{\beta} - \mathbf{X}\boldsymbol{\beta})
$$

$$
= (\boldsymbol{\beta} - \boldsymbol{\beta})\mathbf{X}'\mathbf{X}(\boldsymbol{\beta} - \boldsymbol{\beta})
$$

$$
= \sigma^2 Q_2
$$

Therefore, $Q_1 = Q + Q_2$ and $Q = Q_1 - Q_2$. Since Q_1 is χ^2_n \boldsymbol{n} and Q_2 is χ_p^2 p_p^2 , and $Q = Q_1 - Q_2 = RSS/\sigma^2 \ge 0$, using the previous result (Lecture 6, p. 8), Q is χ^2_n 2
n−p∙