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Basic Distributional Assumptions of the Linear Model:

1. The errors are unbiased: E[ε] = 0.

2. The errors are uncorrelated with common variance:

cov(ε) = σ2
I.

These assumptions imply that

E[Y] = E[Xβ + ε] = Xβ,

cov(Y) = cov(Xβ + ε) =∗ cov(ε) = σ2
I.

∗when X is considered fixed, not random

Results for the full rank case: Under the above assumptions, we

have the following results.

1. The least squares estimate is unbiased :

E[β̂] = E[(X′
X)−1

X
′
Y]

= (X′
X)−1

X
′E[Y]

= (X′
X)−1

X
′
Xβ

= β.

2. The covariance matrix of the least squares estimate is

cov(β̂) = cov[(X′
X)−1

X
′
Y]

= (X′
X)−1

X
′cov(Y)X(X′

X)−1

= (X′
X)−1

X
′σ2

IX(X′
X)−1

= σ2(X′
X)−1

X
′
X(X′

X)−1

= σ2(X′
X)−1

Note that we have NOT yet assumed that errors are normally distributed.
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Optimality of Least-Squares Estimates:

In general, β̂ is not unique so we consider the properties of

θ̂, which is unique. This is an unbiased estimate of the mean

vector of Y (θ = E[Y] = Xβ):

E[θ̂] = E[PY]

= PE[Y]

= PXβ

= Xβ because PX = X

= θ

The next result shows that θ̂ is optimal in the sense of having

minimum variance among all linear unbiased estimators. This

result is the basis of the Gauss-Markov theorem on the esti-

mation of estimable functions, which we will study in a later

lecture.

Theorem: Let θ̂ be the least-squares estimate of θ. For any

linear combination c
′θ, c′θ̂ is (uniquely) the estimate with min-

imum variance among all linear unbiased estimates. We call c′θ̂

the BLUE (Best Linear Unbiased Estimate) of c
′θ.
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Proof: Since θ̂ is unbiased, we have that E[c′θ̂] = c
′θ, so c

′θ̂

is a linear unbiased estimate of c
′θ.

Let d
′
Y be any other linear unbiased estimate. Unbiasedness

implies that E[d′
Y] = c

′θ; we also know that E[d′
Y] = d

′θ.

Therefore d
′θ = c

′θ. Now, θ is a vector in R(X) – we do

not know what θ is, but regardless of its value d
′θ = c

′θ.

Therefore, d
′θ = c

′θ for all θ ∈ R(X).

It follows immediately that (c − d)′θ = 0 for all θ ∈ R(X),

so c− d is orthogonal to R(X). Therefore, P(c− d) = 0 and

Pc = Pd. Now var(c′θ̂) =

var(c′θ̂) = var(c′PY)

= var([Pc]′Y)

= var([Pd]′Y)

= σ2(Pd)′Pd

= σ2
d
′
Pd,

and var(d′
Y) = σ2

d
′
d.

Then var(d′
Y) − var(c′θ̂) =

var(d′
Y) − var(c′θ̂) = σ2

d
′
d − σ2

d
′
Pd

= σ2
d
′(I −P)d

= σ2
d
′(I −P)2d

= σ2[(I − P)d]′(I − P)d

≥ 0, establishing minimum variance.

Note var(d′
Y) − var(c′θ̂) = 0 if and only if (I − P)d = 0,

i.e., d = Pd = Pc, i.e., d
′
Y = (Pc)′Y = c

′
PY = c

′θ̂.

Establishing uniqueness.
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Corollary: If rank(Xn×p) = p, then a
′β̂ is the BLUE of a

′β

for any a.

Proof: Note that rank(Xn×p) = p implies that X
′
X is invert-

ible because rank(X′
X) = rank(X) (Seber & Lee, A2.4). We

have

a
′β = a

′Iβ = a
′

insert
︷ ︸︸ ︷

(X′
X)−1

X
′
Xβ = a

′(X′
X)−1

X
′

=Xβ
︷︸︸︷

θ = c
′θ

where c
′ = a

′(X′
X)−1

X
′. Also,

a
′β̂ = a

′(X′
X)−1

X
′
Xβ̂ = a

′(X′
X)−1

X
′θ̂ = c

′θ̂

By the theorem, c
′θ̂ is the BLUE of c

′θ.

Note: The Gauss-Markov theorem generalizes the above result

to the less-than-full-rank case. In the less-than-full-rank case,

we will have to be more careful. Remember that β̂ is not unique,

so it does not even make sense to say that β̂ is optimal in any

sense.
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Estimation of σ2.

Let rank(X) = r. Define

S2 =
1

n − r
(Y − Xβ̂)′(Y − Xβ̂) =

RSS

n − r
.

This is a generalization of the sample variance.

S2 is an unbiased estimate of σ2. This is proved by writing

(n − r)S2 = RSS = Y
′(I − P)Y,

and applying the general result on expectation of quadratic

forms (Lecture 3, p. 6), and using cov(Y) = σ2
I:

E[X′
AX] = tr(AΣ) + µ′

Aµ.

E[Y′(I − P)Y] = tr(σ2
I(I −P)) + θ′(I −P)θ

= σ2tr(I − P) + θ′(I − P)θ

= σ2(n − r) + β′
X

′(I − P)Xβ

= σ2(n − r) because (I − P)X = 0

Therefore E[S2] = σ2.

Note: S2 also has a minimum variance optimality property

(Seber & Lee Thm 3.4). But the primary interest is in β and

the estimate of σ2 is used primarily to determine the standard

errors for β̂.
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Distributional Theory:

Normality Assumption: In addition to the assumptions E[ε] = 0

and cov(ε) = σ2
I, we now also assume that ε has a multivariate

normal distribution, i.e.,

ε ∼ Nn(0, σ2
I).

This immediately implies that Y ∼ Nn(Xβ, σ2
I).

Theorem: (Seber & Lee Thm 3.5).

Let Y ∼ Nn(Xβ, σ2
I), where rank(Xn×p) = p. Then

(i) β̂ ∼ Np(β, σ2(X′
X)−1).

(ii) (β̂ − β)′(X′
X)(β̂ − β)/σ2 ∼ χ2

p
.

(iii) β̂ is independent of S2.

(iv) RSS/σ2 = (n − p)S2/σ2 ∼ χ2
n−p

.

Proof: (i) β̂ = (X′
X)−1

X
′
Y is multivariate normal by Seber

& Lee Thm 2.2 (Lecture 4, p. 6). The mean and variance were

derived previously.

(ii)

(β̂−β)′(X′
X)(β̂−β)/σ2 = (β̂−β)′[cov(β̂)]−1(β̂−β) ∼ χ2

p
,

by a previous theorem (Lecture 6, p. 4).

If Y ∼ Nn(θ,Σ) and Σ is p.d., then (Y−θ)′Σ−1(Y−θ) ∼ χ2
n
.
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(iii)

cov(β̂,Y − Xβ̂) = cov((X′
X)−1

X
′
Y, (I − P)Y)

= (X′
X)−1

X
′cov(Y,Y)(I − P)′

= (X′
X)−1

X
′σ2

I(I − P)′

= σ2(X′
X)−1

X
′(I − P)

= 0,

because X
′(I −P) = 0 (Lemma, p. 2)
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(iv)

We will use the previous lemma (Lecture 6, p. 8) that states:

• Y ∼ N(θ, σ2
I)

• P1, P2 symmetric matrices

• Q1 = (Y − θ)′P1(Y − θ)/σ2 ∼ χ2
r1

• Q2 = (Y − θ)′P2(Y − θ)/σ2 ∼ χ2
r2

• Q1 − Q2 ≥ 0

⇒ Q1 − Q2 ∼ χ2
r1−r2

.�

For the proof of (iv),

Q1 ≡ ||Y − Xβ||2/σ2 = (Y − Xβ)′(Y − Xβ)/σ2 ∼ χ2
n
,

by a general previous result.

Q2 ≡ ||X(β̂ − β)||2/σ2 = (β̂ − β)′X′
X(β̂ − β)/σ2 ∼ χ2

p
,

by part (ii) of this theorem.

Q ≡ ||Y −Xβ̂||2/σ2 = RSS/σ2.

Our goal to prove the distribution of Q is χ2
n−p

. First, we show

that Q1 = Q + Q2, i.e. Q1 − Q = Q2.
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Note that:

σ2Q = RSS = Y
′(I − P)Y = (Y − Xβ)′(I − P)(Y − Xβ),

because (I − P)X = 0. So

σ2(Q1 − Q) = (Y −Xβ)′(Y −Xβ) − (Y − Xβ)′(I − P)(Y − Xβ)

= (Y −Xβ)′(I − I + P)(Y − Xβ)

= (Y −Xβ)′P(Y −Xβ)

= (Y −Xβ)′P′
P(Y −Xβ)

= (Ŷ −Xβ)′(Ŷ −Xβ)

= (Xβ̂ − Xβ)′(Xβ̂ − Xβ)

= (β̂ − β)X′
X(β̂ − β)

= σ2Q2

Therefore, Q1 = Q + Q2 and Q = Q1 − Q2. Since Q1 is χ2
n

and Q2 is χ2
p
, and Q = Q1 − Q2 = RSS/σ2 ≥ 0, using the

previous result (Lecture 6, p. 8), Q is χ2
n−p

.


