Basic Distributional Assumptions of the Linear Model:

- 1. The errors are unbiased: $E[\boldsymbol{\varepsilon}] = \mathbf{0}$.
- 2. The errors are uncorrelated with common variance:

$$\operatorname{cov}(\boldsymbol{\varepsilon}) = \sigma^2 \mathbf{I}.$$

These assumptions imply that

$$E[\mathbf{Y}] = E[\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}] = \mathbf{X}\boldsymbol{\beta},$$
$$\operatorname{cov}(\mathbf{Y}) = \operatorname{cov}(\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}) =^{*} \operatorname{cov}(\boldsymbol{\varepsilon}) = \sigma^{2}\mathbf{I}.$$

*when \mathbf{X} is considered fixed, not random

Results for the full rank case: Under the above assumptions, we have the following results.

1. The least squares estimate is *unbiased*:

$$E[\boldsymbol{\beta}] = E[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}]$$

= $(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'E[\mathbf{Y}]$
= $(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\boldsymbol{\beta}$
= $\boldsymbol{\beta}.$

2. The *covariance matrix* of the least squares estimate is

$$\operatorname{cov}(\hat{\boldsymbol{\beta}}) = \operatorname{cov}[(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}]$$

= $(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\operatorname{cov}(\mathbf{Y})\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}$
= $(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\sigma^{2}\mathbf{I}\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}$
= $\sigma^{2}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}$
= $\sigma^{2}(\mathbf{X}'\mathbf{X})^{-1}$

Note that we have NOT yet assumed that errors are normally distributed.

Optimality of Least-Squares Estimates:

In general, $\hat{\boldsymbol{\beta}}$ is not unique so we consider the properties of $\hat{\boldsymbol{\theta}}$, which is unique. This is an unbiased estimate of the mean vector of $\mathbf{Y} \ (\boldsymbol{\theta} = E[\mathbf{Y}] = \mathbf{X}\boldsymbol{\beta})$:

$$E[\hat{\boldsymbol{\theta}}] = E[\mathbf{PY}]$$

= $\mathbf{P}E[\mathbf{Y}]$
= $\mathbf{PX}\boldsymbol{\beta}$
= $\mathbf{X}\boldsymbol{\beta}$ because $\mathbf{PX} = \mathbf{X}$
= $\boldsymbol{\theta}$

The next result shows that $\hat{\boldsymbol{\theta}}$ is optimal in the sense of having minimum variance among all linear unbiased estimators. This result is the basis of the Gauss-Markov theorem on the estimation of estimable functions, which we will study in a later lecture.

Theorem: Let $\hat{\boldsymbol{\theta}}$ be the least-squares estimate of $\boldsymbol{\theta}$. For any linear combination $\mathbf{c}'\boldsymbol{\theta}$, $\mathbf{c}'\hat{\boldsymbol{\theta}}$ is (uniquely) the estimate with minimum variance among all linear unbiased estimates. We call $\mathbf{c}'\hat{\boldsymbol{\theta}}$ the BLUE (Best Linear Unbiased Estimate) of $\mathbf{c}'\boldsymbol{\theta}$.

Proof: Since $\hat{\boldsymbol{\theta}}$ is unbiased, we have that $E[\mathbf{c}'\hat{\boldsymbol{\theta}}] = \mathbf{c}'\boldsymbol{\theta}$, so $\mathbf{c}'\hat{\boldsymbol{\theta}}$ is a linear unbiased estimate of $\mathbf{c}'\boldsymbol{\theta}$.

Let $\mathbf{d'Y}$ be any other linear unbiased estimate. Unbiasedness implies that $E[\mathbf{d'Y}] = \mathbf{c'\theta}$; we also know that $E[\mathbf{d'Y}] = \mathbf{d'\theta}$. Therefore $\mathbf{d'\theta} = \mathbf{c'\theta}$. Now, $\boldsymbol{\theta}$ is a vector in $\mathcal{R}(\mathbf{X})$ – we do not know what $\boldsymbol{\theta}$ is, but regardless of its value $\mathbf{d'\theta} = \mathbf{c'\theta}$. Therefore, $\mathbf{d'\theta} = \mathbf{c'\theta}$ for all $\boldsymbol{\theta} \in \mathcal{R}(\mathbf{X})$.

It follows immediately that $(\mathbf{c} - \mathbf{d})'\boldsymbol{\theta} = 0$ for all $\boldsymbol{\theta} \in \mathcal{R}(\mathbf{X})$, so $\mathbf{c} - \mathbf{d}$ is orthogonal to $\mathcal{R}(\mathbf{X})$. Therefore, $\mathbf{P}(\mathbf{c} - \mathbf{d}) = \mathbf{0}$ and $\mathbf{P}\mathbf{c} = \mathbf{P}\mathbf{d}$. Now $\operatorname{var}(\mathbf{c}'\hat{\boldsymbol{\theta}}) =$

$$var(\mathbf{c}'\hat{\boldsymbol{\theta}}) = var(\mathbf{c}'\mathbf{P}\mathbf{Y})$$
$$= var([\mathbf{P}\mathbf{c}]'\mathbf{Y})$$
$$= var([\mathbf{P}\mathbf{d}]'\mathbf{Y})$$
$$= \sigma^{2}(\mathbf{P}\mathbf{d})'\mathbf{P}\mathbf{d}$$
$$= \sigma^{2}\mathbf{d}'\mathbf{P}\mathbf{d},$$

and $\operatorname{var}(\mathbf{d'Y}) = \sigma^2 \mathbf{d'd}$. Then $\operatorname{var}(\mathbf{d'Y}) - \operatorname{var}(\mathbf{c'}\hat{\boldsymbol{\theta}}) =$ $\operatorname{var}(\mathbf{d'Y}) - \operatorname{var}(\mathbf{c'}\hat{\boldsymbol{\theta}}) = \sigma^2 \mathbf{d'd} - \sigma^2 \mathbf{d'Pd}$ $= \sigma^2 \mathbf{d'}(\mathbf{I} - \mathbf{P})\mathbf{d}$ $= \sigma^2 \mathbf{d'}(\mathbf{I} - \mathbf{P})^2 \mathbf{d}$ $= \sigma^2 [(\mathbf{I} - \mathbf{P})\mathbf{d}]'(\mathbf{I} - \mathbf{P})\mathbf{d}$ > 0, establishing minimum variance.

Note $\operatorname{var}(\mathbf{d}'\mathbf{Y}) - \operatorname{var}(\mathbf{c}'\hat{\boldsymbol{\theta}}) = 0$ if and only if $(\mathbf{I} - \mathbf{P})\mathbf{d} = \mathbf{0}$, i.e., $\mathbf{d} = \mathbf{P}\mathbf{d} = \mathbf{P}\mathbf{c}$, i.e., $\mathbf{d}'\mathbf{Y} = (\mathbf{P}\mathbf{c})'\mathbf{Y} = \mathbf{c}'\mathbf{P}\mathbf{Y} = \mathbf{c}'\hat{\boldsymbol{\theta}}$. Establishing uniqueness. Corollary: If rank $(\mathbf{X}_{n \times p}) = p$, then $\mathbf{a}' \hat{\boldsymbol{\beta}}$ is the BLUE of $\mathbf{a}' \boldsymbol{\beta}$ for any \mathbf{a} .

Proof: Note that $\operatorname{rank}(\mathbf{X}_{n \times p}) = p$ implies that $\mathbf{X}'\mathbf{X}$ is invertible because $\operatorname{rank}(\mathbf{X}'\mathbf{X}) = \operatorname{rank}(\mathbf{X})$ (Seber & Lee, A2.4). We have

 $\mathbf{a}'\boldsymbol{\beta} = \mathbf{a}'I\boldsymbol{\beta} = \mathbf{a}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\boldsymbol{\beta} = \mathbf{a}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{\theta} = \mathbf{c}'\boldsymbol{\theta}$

where $\mathbf{c}' = \mathbf{a}' (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}'$. Also,

$$\mathbf{a}'\hat{\boldsymbol{\beta}} = \mathbf{a}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{a}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\hat{\boldsymbol{\theta}} = \mathbf{c}'\hat{\boldsymbol{\theta}}$$

By the theorem, $\mathbf{c}'\hat{\boldsymbol{\theta}}$ is the BLUE of $\mathbf{c}'\boldsymbol{\theta}$.

Note: The Gauss-Markov theorem generalizes the above result to the less-than-full-rank case. In the less-than-full-rank case, we will have to be more careful. Remember that $\hat{\beta}$ is not unique, so it does not even make sense to say that $\hat{\beta}$ is optimal in any sense.

Estimation of σ^2 .

Let $rank(\mathbf{X}) = r$. Define

$$S^{2} = \frac{1}{n-r} (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})' (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}) = \frac{RSS}{n-r}$$

This is a generalization of the sample variance.

 S^2 is an *unbiased* estimate of σ^2 . This is proved by writing

$$(n-r)S^2 = RSS = \mathbf{Y}'(\mathbf{I} - \mathbf{P})\mathbf{Y},$$

and applying the general result on expectation of quadratic forms (Lecture 3, p. 6), and using $cov(\mathbf{Y}) = \sigma^2 \mathbf{I}$:

 $E[\mathbf{X}'\mathbf{A}\mathbf{X}] = \operatorname{tr}(\mathbf{A}\boldsymbol{\Sigma}) + \boldsymbol{\mu}'\mathbf{A}\boldsymbol{\mu}.$

$$E[\mathbf{Y}'(\mathbf{I} - \mathbf{P})\mathbf{Y}] = \operatorname{tr}(\sigma^{2}\mathbf{I}(\mathbf{I} - \mathbf{P})) + \boldsymbol{\theta}'(\mathbf{I} - \mathbf{P})\boldsymbol{\theta}$$

= $\sigma^{2}\operatorname{tr}(\mathbf{I} - \mathbf{P}) + \boldsymbol{\theta}'(\mathbf{I} - \mathbf{P})\boldsymbol{\theta}$
= $\sigma^{2}(n - r) + \boldsymbol{\beta}'\mathbf{X}'(\mathbf{I} - \mathbf{P})\mathbf{X}\boldsymbol{\beta}$
= $\sigma^{2}(n - r)$ because $(\mathbf{I} - \mathbf{P})\mathbf{X} = \mathbf{0}$

Therefore $E[S^2] = \sigma^2$.

Note: S^2 also has a minimum variance optimality property (Seber & Lee Thm 3.4). But the primary interest is in β and the estimate of σ^2 is used primarily to determine the standard errors for $\hat{\beta}$.

Distributional Theory:

Normality Assumption: In addition to the assumptions $E[\boldsymbol{\varepsilon}] = \mathbf{0}$ and $\operatorname{cov}(\boldsymbol{\varepsilon}) = \sigma^2 \mathbf{I}$, we now also assume that $\boldsymbol{\varepsilon}$ has a multivariate normal distribution, i.e.,

$$\boldsymbol{\varepsilon} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I}).$$

This immediately implies that $\mathbf{Y} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})$.

Theorem: (Seber & Lee Thm 3.5). Let $\mathbf{Y} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})$, where rank $(\mathbf{X}_{n \times p}) = p$. Then (i) $\hat{\boldsymbol{\beta}} \sim N_p(\boldsymbol{\beta}, \sigma^2(\mathbf{X}'\mathbf{X})^{-1})$. (ii) $(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})'(\mathbf{X}'\mathbf{X})(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})/\sigma^2 \sim \chi_p^2$. (iii) $\hat{\boldsymbol{\beta}}$ is independent of S^2 . (iv) $RSS/\sigma^2 = (n-p)S^2/\sigma^2 \sim \chi_{n-p}^2$.

Proof: (i) $\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$ is multivariate normal by Seber & Lee Thm 2.2 (Lecture 4, p. 6). The mean and variance were derived previously.

(ii)

 $(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})'(\mathbf{X}'\mathbf{X})(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})/\sigma^2 = (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})'[\operatorname{cov}(\hat{\boldsymbol{\beta}})]^{-1}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \sim \chi_p^2,$ by a previous theorem (Lecture 6, p. 4).

If $\mathbf{Y} \sim N_n(\boldsymbol{\theta}, \boldsymbol{\Sigma})$ and $\boldsymbol{\Sigma}$ is p.d., then $(\mathbf{Y} - \boldsymbol{\theta})' \boldsymbol{\Sigma}^{-1} (\mathbf{Y} - \boldsymbol{\theta}) \sim \chi_n^2$.

$$\operatorname{cov}(\hat{\boldsymbol{\beta}}, \mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}) = \operatorname{cov}((\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}, (\mathbf{I} - \mathbf{P})\mathbf{Y})$$

= $(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\operatorname{cov}(\mathbf{Y}, \mathbf{Y})(\mathbf{I} - \mathbf{P})'$
= $(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\sigma^{2}\mathbf{I}(\mathbf{I} - \mathbf{P})'$
= $\sigma^{2}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\mathbf{I} - \mathbf{P})$
= $\mathbf{0},$

because $\mathbf{X}'(\mathbf{I} - \mathbf{P}) = \mathbf{0}$ (Lemma, p. 2)

(iv)

We will use the previous lemma (Lecture 6, p. 8) that states:

- $\mathbf{Y} \sim N(\boldsymbol{\theta}, \sigma^2 \mathbf{I})$
- $\mathbf{P}_1, \mathbf{P}_2$ symmetric matrices
- $Q_1 = (\mathbf{Y} \boldsymbol{\theta})' \mathbf{P}_1 (\mathbf{Y} \boldsymbol{\theta}) / \sigma^2 \sim \chi_{r_1}^2$
- $Q_2 = (\mathbf{Y} \boldsymbol{\theta})' \mathbf{P}_2 (\mathbf{Y} \boldsymbol{\theta}) / \sigma^2 \sim \chi_{r_2}^2$
- $Q_1 Q_2 \ge 0$

 $\Rightarrow Q_1 - Q_2 \sim \chi^2_{r_1 - r_2}. \Box$ For the proof of (iv),

$$Q_1 \equiv ||\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}||^2 / \sigma^2 = (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) / \sigma^2 \sim \chi_n^2,$$

by a general previous result.

$$Q_2 \equiv ||\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})||^2 / \sigma^2 = (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})' \mathbf{X}' \mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) / \sigma^2 \sim \chi_p^2,$$

by part (ii) of this theorem.

$$Q \equiv ||\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}||^2 / \sigma^2 = RSS / \sigma^2.$$

Our goal to prove the distribution of Q is χ^2_{n-p} . First, we show that $Q_1 = Q + Q_2$, i.e. $Q_1 - Q = Q_2$.

Note that:

$$\sigma^{2}Q = RSS = \mathbf{Y}'(\mathbf{I} - \mathbf{P})\mathbf{Y} = (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{I} - \mathbf{P})(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}),$$

because $(\mathbf{I} - \mathbf{P})\mathbf{X} = \mathbf{0}$. So
$$\sigma^{2}(Q_{1} - Q) = (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) - (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{I} - \mathbf{P})(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$

$$= (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{I} - \mathbf{I} + \mathbf{P})(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$

$$= (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})'\mathbf{P}(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$

$$= (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})'\mathbf{P}'\mathbf{P}(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$

$$= (\hat{\mathbf{Y}} - \mathbf{X}\boldsymbol{\beta})'(\hat{\mathbf{Y}} - \mathbf{X}\boldsymbol{\beta})$$

$$= (\hat{\mathbf{X}} - \mathbf{X}\boldsymbol{\beta})'(\hat{\mathbf{X}} - \mathbf{X}\boldsymbol{\beta})$$

$$= (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})\mathbf{X}'\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})$$

$$= \sigma^{2}Q_{2}$$

Therefore, $Q_1 = Q + Q_2$ and $Q = Q_1 - Q_2$. Since Q_1 is χ_n^2 and Q_2 is χ_p^2 , and $Q = Q_1 - Q_2 = RSS/\sigma^2 \ge 0$, using the previous result (Lecture 6, p. 8), Q is χ_{n-p}^2 .