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Basic Distributional Assumptions of the Linear Model:

1. The errors are unbiased: E[e] = 0.
2. The errors are uncorrelated with common variance:

cov(e) = 0’1

These assumptions imply that
ElY]| = E[XB + €| = X3,
cov(Y) = cov(XB + €) =* cov(e) = o°L.
*when X is considered fixed, not random

Results for the full rank case: Under the above assumptions, we
have the following results.

1. The least squares estimate is unbiased:

EB] = B[(X'X)"'X"Y]
= (X'X)"'X'E[Y]
= (X'X)"'X'Xp3
— /3
2. The covariance matriz of the least squares estimate is
cov(B) = cov[(X'X)'X'Y]
= (X'X) ' Xcov(Y)X(X'X) ™!
= (X'X) ' X' IX(X'X) ™
= (X'X) X' X(X'X) ™
= (X'X)!

Note that we have NOT yet assumed that errors are normally distributed.
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Optimality of Least-Squares Estimates:

In general, B is not unique so we consider the properties of
6, which is unique. This is an unbiased estimate of the mean
vector of Y (0 = E[Y]| = X03):

El0] = EPY]
= PE|Y]
= PXpg
= X3 because PX =X
=0

The next result shows that  is optimal in the sense of having
minimum variance among all linear unbiased estimators. This
result is the basis of the Gauss-Markov theorem on the esti-
mation of estimable functions, which we will study in a later
lecture.

Theorem: Let 6 be the least-squares estimate of @. For any
linear combination ¢’8, ¢’@ is (uniquely) the estimate with min-

imum variance among all linear unbiased estimates. We call ¢’ 0
the BLUE (Best Linear Unbiased Estimate) of ¢’6.
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Proof: Since  is unbiased, we have that E[c'8] = ¢/8, so ¢'0
is a linear unbiased estimate of ¢’6.

Let d"Y be any other linear unbiased estimate. Unbiasedness
implies that E[d"Y| = ¢’0; we also know that £[d"Y]| = d'6.
Therefore A’ = ¢’8. Now, 6 is a vector in R(X) — we do
not know what 6 is, but regardless of its value d’'6 = 6.
Therefore, d'8 = ¢’ for all 8 € R(X).

It follows immediately that (¢ — d)’'8@ = 0 for all 8 € R(X),
so ¢ — d is orthogonal to R(X). Therefore, P(c — d) = 0 and
Pc = Pd. Now var(c'8) =

var(¢'0) = var(¢'PY)
= var([Pc]'Y)
= var([Pd]"Y)
= o*(Pd)Pd
= ¢°d'Pd,
and var(d'Y) = o*d'd.
Then var(d'Y) — var(c¢/0) =
var(d'Y) — var(c'@) = o°d'd — o°d'Pd
= o*d'I-P)d
o*d' (I - P)*d
o’[(I-P)d(TI—-P)d

0, establishing minimum variance.

1V

Note var(d'Y) — var(c’8) = 0 if and only if (I — P)d = 0,
ie, d = Pd = Pc, ie, dY = (Pc)Y = ¢'PY = 0.

Establishing uniqueness.
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Corollary: If rank(X,,«,) = p, then a’ 3 is the BLUE of 2’8
for any a.

Proof: Note that rank(X,,«,) = p implies that X'X is invert-
ible because rank(X'X) = rank(X) (Seber & Lee, A2.4). We

have
insert -x3
aB=aIf=a (XX)'XXB=a/(XX)"'X"0 =co

where ¢’ = a’(X'X)"!1X’. Also,

aB=a(X'X)'X'XB8 =a'(X'X)"'X'0 =6
By the theorem, ¢’ is the BLUE of ¢'6.
Note: The Gauss-Markov theorem generalizes the above result
to the less-than-full-rank case. In the less-than-full-rank case,
we will have to be more careful. Remember that 3 is not unique,

so it does not even make sense to say that B is optimal in any
sense.
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Estimation of o2.

Let rank(X) = r. Define

L vy - xpyy - xp) = 195

n—r n—r

S2 =

This is a generalization of the sample variance.

S? is an unbiased estimate of 0. This is proved by writing
(n—17)S*=RSS=Y'(I1-P)Y,

and applying the general result on expectation of quadratic
forms (Lecture 3, p. 6), and using cov(Y) = oI

E[X'AX] = t1(AS) + p/Ap.

EYI-P)Y] = tr(c’I(I-P)) +60'(1 - P)o
= o’tr(I-P)+0'(1-P)6O
= o’(n—1)+BX(I-P)XA3
= o°(n—7) because (I -P)X =0

Therefore E[S?] = o2

Note: S? also has a minimum variance optimality property
(Seber & Lee Thm 3.4). But the primary interest is in 3 and
the estimate of o2 is used primarily to determine the standard
errors for B
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Distributional Theory:

Normality Assumption: In addition to the assumptions Ele] = 0
and cov(g) = o*I, we now also assume that € has a multivariate
normal distribution, i.e.,

e ~ N,(0,0°0).
This immediately implies that Y ~ N,,(X3, 0°I).

Theorem: (Seber & Lee Thm 3.5).

Let Y ~ N,(X8,0°T), where rank(X,,»,) = p. Then
)8 ~ 20,0

i) (B = BYXX)(B - B)fo* ~

(iii) B is independent of S2.

(iv) RSS/o® = (n —p)S*/o* ~ x;_,

Proof: (i) B = (X'X)"'X'Y is multivariate normal by Seber
& Lee Thm 2.2 (Lecture 4, p. 6). The mean and variance were
derived previously.

(11)

(B—B)(X'X)(B—B)/0* = (B—B)[cov(B)] (B—B) ~ x>
by a previous theorem (Lecture 6, p. 4).

Y ~ N,(0,%) and Xisp.d., then (Y—-0)X71(Y—-0) ~ x>
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(iii)
cov(B, Y —XB) = cov((X'X)'X'Y, (I-P)Y)
= (X'X) ' X'cov(Y,Y)I - P)
= (X'X)"'X'¢’I(I - P)
oA X'X)"'X'(I-P)
— ()7

because X'(I — P) = 0 (Lemma, p. 2)
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(iv)
We will use the previous lemma (Lecture 6, p. 8) that states:

oY ~ N(6,05°T)

e P, P, symmetric matrices

« Q1= (Y —8)Py(Y — 8)/0> ~

Q= (Y —-0)Py(Y —0)/0% ~ x3,

e Q1 —(22>0
= Q1 — Q2 ~ X%l—m‘l:l
For the proof of (iv),

Q1 =|[Y = X8| /o = (Y = XB)(Y = XB)/0” ~ x5,
by a general previous result.

Q2= |[X(B - B/’ = (B—B)X'X(B—B)/0” ~ x;,
by part (ii) of this theorem.

Q=Y —X8||’/o” = RSS/a”.

Our goal to prove the distribution of () is X?%—p' First, we show

that Q1 = Q + Q2, 1.e. Q1 —Q = Q.
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Note that:

0°Q =RSS=Y'(I1-P)Y =

because (I — P)X = 0. So

Q11— Q) =

Y - XB)’(Y XB) - (Y - XB)(I-

Y — )’(I—I+P)(Y X3)

Y — X3)/P(Y — X3)
B)P'P(Y — X3

Y - X8)(Y - Xg)

= (XB - XB)(XB - Xp)

(
= |
= |
= (Y -X
= |
(
(B

BIX'X(B - B)
UQQ

Therefore, Q1 = Q + Q2 and Q = Q) —

and )y is X]%, and Q = )4
previous result (Lecture 6, p. 8), @ is X727,—p'

(Y - XB)(1 -

)

P)(Y — X§),

P)(Y — X3)

(2. Since Qq is x?
— Qo = RSS/o* > 0, using the



