9.1. Finding Least-Squares Estimates if $r(\mathbf{X}) < p$

If $\mathbf{X}_{n \times p}$ has rank r < p, there is not a unique solution $\hat{\boldsymbol{\beta}}$ to the normal equations. We have 3 ways to find *a* solution $\hat{\boldsymbol{\beta}}$ and *the* orthogonal projection $\hat{\mathbf{Y}}$:

- 1. Use a generalized inverse $(\mathbf{X}'\mathbf{X})^{-}$.
- 2. Reduce the model to one of full rank.
- 3. Impose identifiability constraints.

9.2. METHOD 1: Use a generalized inverse $(\mathbf{X}'\mathbf{X})^{-}$.

Definition: For $\mathbf{A}_{m \times n}$, a generalized inverse (g-inv) of \mathbf{A} is an $n \times m$ matrix \mathbf{A}^- satisfying

$$\mathbf{A}\mathbf{A}^{-}\mathbf{A}=\mathbf{A}.$$

Definition: \mathbf{A}^- is a *reflexive g-inv* if

$$AA^{-}A = A$$

and, in addition,

$$\mathbf{A}^{-}\mathbf{A}\mathbf{A}^{-}=\mathbf{A}^{-}.$$

Lemma 9.2.1a: $\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{Y}$ is a solution to the normal equations $\mathbf{X}'\mathbf{Y} = \mathbf{X}'\mathbf{X}\boldsymbol{\beta}$.

Proof: Rewrite the normal equations as

$$\mathbf{X'Y} = \mathbf{X'X}\hat{\boldsymbol{\beta}}$$

= $\mathbf{\overline{X'X}}(\mathbf{X'X})^{-}\mathbf{X'X}\hat{\boldsymbol{\beta}}$
= $\mathbf{X'X}(\mathbf{X'X})^{-}\mathbf{\underline{X'X}}\hat{\boldsymbol{\beta}}$
= $\mathbf{X'X}(\mathbf{X'X})^{-}\mathbf{\underline{X'X}}\hat{\boldsymbol{\beta}}$
= $\mathbf{X'X}(\mathbf{X'X})^{-}\mathbf{X'Y}$ (from 1st line)

Therefore, $\hat{\boldsymbol{\beta}} = (\mathbf{X'X})^{-}\mathbf{X'Y}$ is a solution to the normal equations.

Lemma 9.2.1b: The orthogonal projection $\hat{\mathbf{Y}}$ of \mathbf{Y} onto $\mathcal{R}(\mathbf{X})$ is given by \mathbf{PY} , where

$$\mathbf{P} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'$$

for any generalized inverse $(\mathbf{X}'\mathbf{X})^{-}$.

Proof: We need to build up to establishing this result.

Lemma 9.2.2: If $\mathbf{PX'X} = \mathbf{QX'X}$ then $\mathbf{PX'} = \mathbf{QX'}$.

Proof: For any matrix \mathbf{A} , if $\mathbf{A}\mathbf{A}' = \mathbf{0}$, then $\mathbf{A} = \mathbf{0}$ (easy to check).

 $(\mathbf{P}\mathbf{X}' - \mathbf{Q}\mathbf{X}')(\mathbf{P}\mathbf{X}' - \mathbf{Q}\mathbf{X}')' = (\mathbf{P}\mathbf{X}' - \mathbf{Q}\mathbf{X}')\mathbf{X}(\mathbf{P} - \mathbf{Q})'$ $= (\mathbf{P}\mathbf{X}'\mathbf{X} - \mathbf{Q}\mathbf{X}'\mathbf{X})(\mathbf{P} - \mathbf{Q})' = \mathbf{0}(\mathbf{P} - \mathbf{Q})' = \mathbf{0},$

And so $\mathbf{PX'} - \mathbf{QX'} = \mathbf{0}$.

Theorem (Searle 7.1, 1987) If G is a g-inv of X'X, then

1. \mathbf{G}' is also a *g-inv* of $\mathbf{X}'\mathbf{X}$

 $(\mathbf{X}'\mathbf{X}\mathbf{G}'\mathbf{X}'\mathbf{X})' = \mathbf{X}'\mathbf{X}\mathbf{G}\mathbf{X}'\mathbf{X} = \mathbf{X}'\mathbf{X}$

Now take the transpose of both sides.

2. $\mathbf{G}\mathbf{X}'\mathbf{X}\mathbf{G}'$ is a symmetric reflexive g-inv of $\mathbf{X}'\mathbf{X}$

Symmetry is clear. To show $\mathbf{GX'XG'}$ is a g-inv of $\mathbf{X'X}$:

 $\mathbf{X'X}(\mathbf{GX'XG'})\mathbf{X'X} = (\mathbf{X'XGX'X})\mathbf{G'X'X} = (\mathbf{X'X})\mathbf{G'X'X}$

which equals $\mathbf{X'X}$ using (1.) above. To show $\mathbf{X'X}$ is a g-inv of $\mathbf{GX'XG'}$:

 $\mathbf{G}\mathbf{X}'\mathbf{X}\mathbf{G}'(\mathbf{X}'\mathbf{X})\mathbf{G}\mathbf{X}'\mathbf{X}\mathbf{G}' =$

$\mathbf{G}\mathbf{X}'\mathbf{X}\mathbf{G}'(\mathbf{X}'\mathbf{X}\mathbf{G}\mathbf{X}'\mathbf{X})\mathbf{G}'$ $=\mathbf{G}\mathbf{X}'\mathbf{X}\mathbf{G}'(\mathbf{X}'\mathbf{X})\mathbf{G}'=\mathbf{G}(\mathbf{X}'\mathbf{X}\mathbf{G}'\mathbf{X}'\mathbf{X})\mathbf{G}'$

which equals $\mathbf{GX'XG'}$ using (1.) above again.

3. (a) $\mathbf{X'XGX'} = \mathbf{X'}$ and (b) $\mathbf{XGX'X} = \mathbf{X}$

 $\mathbf{X'XGX'X} = \mathbf{IX'X}$, so $\mathbf{X'XGX'} = \mathbf{IX'}$ by Lemma 9.2.2, proving (a). To prove (b), combine (a) and (1.) above: $\mathbf{X'XG'X'} = \mathbf{X'}$, now take transposes.

- 4. XGX' = XHX' for any other g-inv H (KEY RESULT!)
 By (3.), XGX'X = X = XHX'X. Applying Lemma 9.2.2 gives the result.
- 5. $\mathbf{XGX'}$ is symmetric

 $(\mathbf{X}\mathbf{G}\mathbf{X}')' = \mathbf{X}\mathbf{G}'\mathbf{X}'$. From (1.), \mathbf{G}' is also a g-inv. Therefore, by (4.), $\mathbf{X}\mathbf{G}'\mathbf{X}' = \mathbf{X}\mathbf{G}\mathbf{X}'$.

9.3. Computing a generalized inverse of $\mathbf{X}'\mathbf{X}$.

Let $\mathbf{X} = (\mathbf{X_1}, \mathbf{X_2})$, where \mathbf{X}_1 consists of r linearly independent columns from \mathbf{X} . Then a generalized inverse of $\mathbf{X}'\mathbf{X}$ is

$$(\mathbf{X}'\mathbf{X})^{-} = \left(\begin{array}{cc} (\mathbf{X}_{1}'\mathbf{X}_{1})^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{array} \right).$$

This result is a special case of the following Lemma.

Lemma 9.3.1: Let the matrix $\mathbf{W}_{p \times p}$ have rank r and be partitioned as

$$\mathbf{W} = \left(egin{array}{c} \mathbf{A} & \mathbf{B} \ \mathbf{C} & \mathbf{D} \end{array}
ight),$$

where \mathbf{A} has full rank r. Then a generalized inverse of \mathbf{W} is

$$\mathbf{W}^- = \left(egin{array}{cc} \mathbf{A}^{-1} & \mathbf{0} \ \mathbf{0} & \mathbf{0} \end{array}
ight).$$

Proof:

$$WW^{-}W = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} A^{-1} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
$$= \begin{pmatrix} I & 0 \\ CA^{-1} & 0 \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
$$= \begin{pmatrix} A & B \\ C & CA^{-1}B \end{pmatrix}$$

This equals \mathbf{W} if $\mathbf{D} = \mathbf{C}\mathbf{A}^{-1}\mathbf{B}$. Why does this have to be true? Since \mathbf{A} has rank r (the same rank as \mathbf{W}), this means that any column of $\begin{pmatrix} \mathbf{B} \\ \mathbf{D} \end{pmatrix}$ can be written as a linear combination of the columns of $\begin{pmatrix} \mathbf{A} \\ \mathbf{C} \end{pmatrix}$. I.E., $\begin{pmatrix} \mathbf{B} \\ \mathbf{D} \end{pmatrix} = \begin{pmatrix} \mathbf{A} \\ \mathbf{C} \end{pmatrix} \mathbf{F}$, for some matrix \mathbf{F} . But then $\mathbf{B} = \mathbf{A}\mathbf{F}$, so $\mathbf{F} = \mathbf{A}^{-1}\mathbf{B}$. Since $\mathbf{D} = \mathbf{C}\mathbf{F}$, $\mathbf{D} = \mathbf{C}\mathbf{A}^{-1}\mathbf{B}$. Also note that for the projection matrix onto $\mathcal{R}(\mathbf{X})$, we can always use

$$\mathbf{P} = \mathbf{X}_1 (\mathbf{X}_1' \mathbf{X}_1)^{-1} \mathbf{X}_1'.$$

We know that such a \mathbf{P} is a projection onto $\mathcal{R}(\mathbf{X}_1)$, but $\mathcal{R}(\mathbf{X}_1) = \mathcal{R}(\mathbf{X})$.

Example: One-way ANOVA with 2 groups

$$\begin{pmatrix} Y_{11} \\ \vdots \\ Y_{1n_1} \\ Y_{21} \\ \vdots \\ Y_{2n_2} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ \vdots & \vdots & \vdots \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ \vdots & \vdots & \vdots \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mu \\ \alpha_1 \\ \alpha_2 \end{pmatrix} + \begin{pmatrix} \varepsilon_{11} \\ \vdots \\ \varepsilon_{1n_1} \\ \varepsilon_{21} \\ \vdots \\ \varepsilon_{2n_2} \end{pmatrix}$$

(What is the rank of \mathbf{X} ? 2)

$$\mathbf{X'X} = egin{pmatrix} n & n_1 & n_2 \ n_1 & n_1 & 0 \ n_2 & 0 & n_2 \end{pmatrix}.$$

Let \mathbf{X}_1 be the first two columns of \mathbf{X} . Then

$$(\mathbf{X}_{1}'\mathbf{X}_{1})^{-1} = \begin{pmatrix} n & n_{1} \\ n_{1} & n_{1} \end{pmatrix}^{-1} = \frac{1}{nn_{1} - n_{1}^{2}} \begin{pmatrix} n_{1} & -n_{1} \\ -n_{1} & n \end{pmatrix}$$
$$= \begin{pmatrix} \frac{1}{n_{2}} & \frac{-1}{n_{2}} \\ \frac{-1}{n_{2}} & \frac{1}{n_{1}} + \frac{1}{n_{2}} \end{pmatrix}$$

and a generalized inverse of $\mathbf{X}'\mathbf{X}$ is

$$(\mathbf{X'X})^- = \left(\begin{array}{ccc} n_2^{-1} & -n_2^{-1} & 0 \\ -n_2^{-1} & n_1^{-1} + n_2^{-1} & 0 \\ 0 & 0 & 0 \end{array} \right).$$

What is the solution $\hat{\boldsymbol{\beta}}$ to the normal equations that corresponds to this generalized inverse?

$$\hat{\boldsymbol{\beta}} = \begin{pmatrix} n_2^{-1} & -n_2^{-1} & 0\\ -n_2^{-1} & n_1^{-1} + n_2^{-1} & 0\\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \sum_j Y_{1j} + \sum_j Y_{2j} \\ \sum_j Y_{1j} \\ \sum_j Y_{2j} \end{pmatrix}$$
$$= \begin{pmatrix} \bar{Y}_2 \\ \bar{Y}_1 - \bar{Y}_2 \\ 0 \end{pmatrix}$$

Compute $\hat{\mathbf{Y}}$ as $\mathbf{X}\hat{\boldsymbol{\beta}}$:

$$\begin{pmatrix} 1 & 1 & 0 \\ \vdots & \vdots & \vdots \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ \vdots & \vdots & \vdots \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} \bar{Y}_2 \\ \bar{Y}_1 - \bar{Y}_2 \\ 0 \end{pmatrix} = \begin{pmatrix} \bar{Y}_1 \\ \vdots \\ \bar{Y}_1 \\ \bar{Y}_2 \\ \vdots \\ \bar{Y}_2 \\ \vdots \\ \bar{Y}_2 \end{pmatrix}$$

9.4. Properties of \mathbf{P}

Lemma 9.5.1: Let rank(\mathbf{X}) = r < p and $\mathbf{P} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'$ where $(\mathbf{X}'\mathbf{X})^{-}$ is a generalized inverse of $\mathbf{X}'\mathbf{X}$. Then

(i) \mathbf{P} and $\mathbf{I} - \mathbf{P}$ are projection matrices.

(ii)
$$\operatorname{rank}(\mathbf{I} - \mathbf{P}) = \operatorname{tr}(\mathbf{I} - \mathbf{P}) = n - r.$$

(iii)
$$\mathbf{PX} = \mathbf{X}$$
.

Note that by the Theorem part (4.), all generalized inverses give the same \mathbf{P} .

Proof:

(i) \mathbf{P} is symmetric by the Theorem part (5.).

P is idempotent: Let $\mathbf{G} = (\mathbf{X'X})^-$ so that $\mathbf{P} = \mathbf{XGX'}$. Then $\mathbf{P}^2 = (\mathbf{XGX'})(\mathbf{XGX'}) = (\mathbf{XG})(\mathbf{X'XGX'}) = \mathbf{XGX'}$ by the Theorem part (3a.).

So \mathbf{P} is symmetric and idempotent and thus a projection. It then follows easily that $\mathbf{I} - \mathbf{P}$ is as well.

(ii) We know rank = trace for projection matrices.

(iii) $\mathbf{PX} = \mathbf{XGX'X} = \mathbf{X}$ by the Theorem part (3b.).

9.5. METHOD 2: Reduce the model to one of full rank.

Let \mathbf{X}_1 consist of r linearly independent columns from \mathbf{X} and let \mathbf{X}_2 consist of the remaining columns. Then $\mathbf{X}_2 = \mathbf{X}_1 \mathbf{F}$ for some \mathbf{F} because the columns of \mathbf{X}_1 span the column space of \mathbf{X} . Write

$$\mathbf{X} = (\mathbf{X}_1, \mathbf{X}_2) = (\mathbf{X}_1, \mathbf{X}_1 \mathbf{F}) = \mathbf{X}_1(\mathbf{I}_{\mathbf{r} \times \mathbf{r}}, \mathbf{F}),$$

This is a special case of the factorization

$$\mathbf{X}=\mathbf{K}\mathbf{L},$$

where rank $(\mathbf{K}_{n \times r}) = r$ and rank $(\mathbf{L}_{r \times p}) = r$. Using this general notation,

$$E[\mathbf{Y}] = \mathbf{X}\boldsymbol{\beta} = \mathbf{K}\mathbf{L}\boldsymbol{\beta} = \mathbf{K}\boldsymbol{\alpha}.$$

Therefore, we have reparametrized the linear model into one of full rank.

Because **K** has full rank, the least squares estimate of $\boldsymbol{\alpha}$ is

$$\hat{\boldsymbol{\alpha}} = (\mathbf{K}'\mathbf{K})^{-1}\mathbf{K}'\mathbf{Y}$$

and

$$\hat{\mathbf{Y}} = \mathbf{K}\hat{\boldsymbol{\alpha}} = \mathbf{K}(\mathbf{K}'\mathbf{K})^{-1}\mathbf{K}'\mathbf{Y}.$$

Therefore, $\mathbf{P} = \mathbf{K}(\mathbf{K'K})^{-1}\mathbf{K'}$. If $\mathbf{K} = \mathbf{X}_1$, this gives us our previous expression $\mathbf{P} = \mathbf{X}_1(\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{X}_1'$.

In-Class Exercise: One-way ANOVA with 2 groups – revisited Let \mathbf{X}_1 consist of the first 2 columns of \mathbf{X} . Apply the method on the previous page. What is \mathbf{F} ? What is $\boldsymbol{\alpha}$? What is $\hat{\boldsymbol{\alpha}}$? What is $\hat{\mathbf{Y}}$?

See the end of this document for the solution.

9.6. METHOD 3: Impose identifiability constraints

Impose $s \equiv p - r$ linear constraints on $\boldsymbol{\beta}$ of the form $\mathbf{H}_{s \times p} \boldsymbol{\beta} =$ **0** to make $\boldsymbol{\beta}$ uniquely determined ("identifiable"), i.e., $\hat{\boldsymbol{\beta}}$ is unique: for any $\hat{\mathbf{Y}} \in \mathcal{R}(\mathbf{X})$, there is a unique $\hat{\boldsymbol{\beta}}$ satisfying

$$\mathbf{X}\hat{\boldsymbol{\beta}} = \hat{\mathbf{Y}} \text{ and } \mathbf{H}\hat{\boldsymbol{\beta}} = \mathbf{0}.$$

Let's drop the "hats" for aestetics. We can re-write this as

$$\left(egin{array}{c} \mathbf{Y} \ \mathbf{0} \end{array}
ight) = \left(egin{array}{c} \mathbf{X} \ \mathbf{H} \end{array}
ight) oldsymbol{eta} \equiv \mathbf{G}oldsymbol{eta}.$$

Under what conditions have we accomplished our goal? When is there a unique solution to $\begin{pmatrix} \mathbf{Y} \\ \mathbf{0} \end{pmatrix} = \mathbf{G}\boldsymbol{\beta}$? Lemma 9.6.1: A unique solution exists if and only if **G** has rank p and the rows of **H** are linearly independent of the rows of **X**.

Proof: A solution β will exist for all $\mathbf{Y} \in \mathcal{R}(\mathbf{X})$ if and only if

$$\left(\begin{array}{c} \mathbf{Y} \\ \mathbf{0} \end{array}
ight) \in \mathcal{R}(\mathbf{G}),$$

if and only if, for all $\mathbf{u} \in \Re^{n+s}$,

$$\mathbf{G'u} = \mathbf{0} \Longrightarrow \left(\begin{array}{c} \mathbf{Y} \\ \mathbf{0} \end{array}\right)' \mathbf{u} = 0$$

$$($$
since $\begin{pmatrix} \mathbf{Y} \\ \mathbf{0} \end{pmatrix} = \mathbf{GF}, (\mathbf{GF})'\mathbf{u} = \mathbf{F}'\mathbf{G}'\mathbf{u} = \mathbf{F}'\mathbf{0} = \mathbf{0}).$

This is equivalent to

$$(\mathbf{X}',\mathbf{H}')\begin{pmatrix}\mathbf{u}_X\\\mathbf{u}_H\end{pmatrix}=\mathbf{0}\Longrightarrow(\mathbf{Y}',\mathbf{0}')\begin{pmatrix}\mathbf{u}_X\\\mathbf{u}_H\end{pmatrix}=0,$$

i.e.,

$$\mathbf{X}'\mathbf{u}_X + \mathbf{H}'\mathbf{u}_H = \mathbf{0} \implies \mathbf{Y}'\mathbf{u}_X = 0, \text{ for all } \mathbf{Y} \in \mathcal{R}(\mathbf{X})$$
$$\implies (\mathbf{X}\mathbf{a})'\mathbf{u}_X = 0, \text{ for all } \mathbf{a}$$
$$\implies \mathbf{X}'\mathbf{u}_X = \mathbf{0},$$

if and only if

$$\mathbf{X}'\mathbf{u}_X + \mathbf{H}'\mathbf{u}_H = \mathbf{0} \Longrightarrow \mathbf{X}'\mathbf{u}_X = \mathbf{0} \text{ and } \mathbf{H}'\mathbf{u}_H = \mathbf{0}$$

This just says that the rows of \mathbf{X} are linearly independent of the rows of \mathbf{H} .

The solution will be unique if and only if the columns of **G** are linearly independent, i.e., $\operatorname{rank}(\mathbf{G}) = p$.

Corollary: A unique solution exists if and only if **G** has rank p and **H** has rank s = p - r.

To use this method to estimate $\boldsymbol{\beta}$, we solve $\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$ and $\mathbf{H}\hat{\boldsymbol{\beta}} = \mathbf{0}$, i.e., we solve the augmented normal equations:

 $\mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}}=\mathbf{X}'\mathbf{Y}$ and $\mathbf{H}'\mathbf{H}\hat{\boldsymbol{\beta}}=\mathbf{0}$

These equalities together give:

$$(\mathbf{X}'\mathbf{X} + \mathbf{H}'\mathbf{H})\hat{\boldsymbol{\beta}} = (\mathbf{G}'\mathbf{G})\hat{\boldsymbol{\beta}} = \mathbf{X}'\mathbf{Y},$$

The solution is given by:

$$\hat{\boldsymbol{\beta}} = (\mathbf{G}'\mathbf{G})^{-1}\mathbf{X}'\mathbf{Y},$$

and $\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{P}\mathbf{Y}$, where $\mathbf{P} = \mathbf{X}(\mathbf{G}'\mathbf{G})^{-1}\mathbf{X}'$.

In Class Exercise: One-way ANOVA with 2 groups – revisited: Apply Method 3 using the constraint $\alpha_1 + \alpha_2 = 0$. To make life easier, assume $n_1 = n_2 = \frac{1}{2}n$. What is **H**? What is $\hat{\boldsymbol{\beta}}$? What is $\hat{\mathbf{Y}}$?

You "might" find the following result useful:

$$\begin{pmatrix} n & \frac{n}{2} & \frac{n}{2} \\ \frac{n}{2} & \frac{n}{2} + 1 & 1 \\ \frac{n}{2} & 1 & \frac{n}{2} + 1 \end{pmatrix}^{-1} = \begin{pmatrix} \frac{n+4}{4n} & -\frac{1}{4} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{n+4}{4n} & \frac{n-4}{4n} \\ -\frac{1}{4} & \frac{n-4}{4n} & \frac{n+4}{4n} \end{pmatrix}$$

See the end of this document for the solution.

9.6. METHOD $3\frac{1}{2}$: Impose identifiability constraints, implemented differently.

Consider the example of one-way ANOVA with, say, 5 groups. Suppose we use the constraint $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 = 0$. We can use this constraint to formulate a full-rank model, which we illustrate by this example. (Thus the method might be considered "in between" methods 2 and 3.)

Consider one "replication" – five observations from each of the five groups. The design matrix **X** will have five columns (not six), for μ , α_1 , α_2 , α_3 , α_4 , (but not α_5).

$$\mathbf{X} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & -1 & -1 & -1 \end{pmatrix}$$

The row of **X** for the observation from group 5 is gotten from using $\alpha_5 = -\alpha_1 - \alpha_2 - \alpha_3 - \alpha_4$.

Solution to Exercise for Method 3

$$\mathbf{H}\boldsymbol{\beta} \equiv (0, 1, 1) \begin{pmatrix} \mu \\ \alpha_1 \\ \alpha_2 \end{pmatrix} = 0$$
$$\mathbf{G}'\mathbf{G} = \begin{pmatrix} n & n/2 & n/2 \\ n/2 & n/2 + 1 & 1 \\ n/2 & 1 & n/2 + 1 \end{pmatrix}$$
$$(\mathbf{G}'\mathbf{G})^{-1} = \begin{pmatrix} \frac{n+4}{4n} & \frac{-1}{4} & \frac{-1}{4} \\ \frac{-1}{4} & \frac{n+4}{4n} & \frac{n-4}{4n} \\ \frac{-1}{4} & \frac{n-4}{4n} & \frac{n+4}{4n} \end{pmatrix}$$
$$\hat{\boldsymbol{\beta}} = (\mathbf{G}'\mathbf{G})^{-1}\mathbf{X}'\mathbf{Y} = \begin{pmatrix} \bar{Y}_{..} \\ \frac{1}{2}(\bar{Y}_{1.} - \bar{Y}_{2.}) \\ \frac{1}{2}(\bar{Y}_{2.} - \bar{Y}_{1.}) \end{pmatrix}$$

Clearly $\hat{\boldsymbol{\beta}}$ satisfies the constraint $\alpha_1 + \alpha_2 = 0$. Again, we have

$$\hat{\mathbf{Y}} = \mathbf{X} \hat{oldsymbol{eta}} = egin{pmatrix} ar{Y_{1\cdot}} \ dots \ ar{Y_{1\cdot}} \ ar{Y_{1\cdot}} \ ar{Y_{1\cdot}} \ ar{Y_{2\cdot}} \ dots \ ar{Y_{2\cdot}} \ dots \ ar{Y_{2\cdot}} \ dots \ ar{Y_{2\cdot}} \end{pmatrix}$$

Solution to Exercise for Method 2

The third column of **X** is the first column minus the second column. Therefore, $\mathbf{F} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

$$\mathbf{X} = (\mathbf{X}_1, \mathbf{X}_1 \mathbf{F}) = \underbrace{\mathbf{X}_1}_{\mathbf{K}} \underbrace{\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}}_{\mathbf{L}}$$

 $E(\mathbf{Y}) = \mathbf{X}\boldsymbol{\beta} = \mathbf{K}\mathbf{L}\boldsymbol{\beta} = \mathbf{K}\boldsymbol{\alpha}$ where $\boldsymbol{\alpha} = \mathbf{L}\boldsymbol{\beta}$

$$\boldsymbol{\alpha} = \mathbf{L}\boldsymbol{\beta} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} \mu \\ \alpha_1 \\ \alpha_2 \end{pmatrix} = \begin{pmatrix} \mu + \alpha_2 \\ \alpha_1 - \alpha_2 \end{pmatrix}.$$

$$\hat{\boldsymbol{\alpha}} = (\mathbf{K}'\mathbf{K})^{-1}\mathbf{K}'\mathbf{Y}$$

$$= \begin{pmatrix} n & n_1 \\ n_1 & n_1 \end{pmatrix}^{-1} \begin{pmatrix} \sum_j Y_{1j} + \sum_j Y_{2j} \\ \sum_j Y_{1j} \end{pmatrix}$$

$$= \begin{pmatrix} n_2^{-1} & -n_2^{-1} \\ -n_2^{-1} & n_1^{-1} + n_2^{-1} \end{pmatrix} \begin{pmatrix} \sum_j Y_{1j} + \sum_j Y_{2j} \\ \sum_j Y_{1j} \end{pmatrix}$$

$$= \begin{pmatrix} \bar{Y}_2 \\ \bar{Y}_1 - \bar{Y}_2 \end{pmatrix}$$

$$= \mathbf{X}_1 \hat{\boldsymbol{\alpha}} = \begin{pmatrix} \bar{Y}_1 \\ \vdots \\ \bar{Y}_1 \\ \vdots \\ \bar{Y}_2 \\ \vdots \\ \bar{Y}_2 \end{pmatrix}, \text{ as before}$$

 $\hat{\mathbf{Y}}$