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9.1. Finding Least-Squares Estimates if r(X) < p

If Xn×p has rank r < p, there is not a unique solution β̂ to the

normal equations. We have 3 ways to find a solution β̂ and the

orthogonal projection Ŷ:

1. Use a generalized inverse (X′X)−.

2. Reduce the model to one of full rank.

3. Impose identifiability constraints.
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9.2. METHOD 1: Use a generalized inverse (X′X)−.

Definition: For Am×n, a generalized inverse (g-inv) of A is an

n × m matrix A− satisfying

AA−A = A.

Definition: A− is a reflexive g-inv if

AA−A = A

and, in addition,

A−AA− = A−.

Lemma 9.2.1a: β̂ = (X′X)−X′Y is a solution to the normal

equations X′Y = X′Xβ.

Proof: Rewrite the normal equations as

X′Y = X′Xβ̂

=

=X′X
︷ ︸︸ ︷

X′X(X′X)−X′X β̂

= X′X(X′X)− X′Xβ̂
︸ ︷︷ ︸

= X′X(X′X)−X′Y (from 1st line)

Therefore, β̂ = (X′X)−X′Y is a solution to the normal equa-

tions.
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Lemma 9.2.1b: The orthogonal projection Ŷ of Y onto R(X)

is given by PY, where

P = X(X′X)−X′

for any generalized inverse (X′X)−.

Proof: We need to build up to establishing this result.

Lemma 9.2.2: If PX′X = QX′X then PX′ = QX′.

Proof: For any matrix A, if AA′ = 0, then A = 0 (easy to

check).

(PX′
− QX′)(PX′

− QX′)′ = (PX′
−QX′)X(P −Q)′

= (PX′X − QX′X)(P − Q)′ = 0(P − Q)′ = 0,

And so PX′ − QX′ = 0.
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Theorem (Searle 7.1, 1987) If G is a g-inv of X′X, then

1. G′ is also a g-inv of X′X

(X′XG′X′X)′ = X′XGX′X = X′X

Now take the transpose of both sides.

2. GX′XG′ is a symmetric reflexive g-inv of X′X

Symmetry is clear. To show GX′XG′ is a g-inv of X′X:

X′X(GX′XG′)X′X = (X′XGX′X)G′X′X = (X′X)G′X′X

which equals X′X using (1.) above.

To show X′X is a g-inv of GX′XG′:

GX′XG′(X′X)GX′XG′ =

GX′XG′(X′XGX′X)G′

= GX′XG′(X′X)G′ = G(X′XG′X′X)G′

which equals GX′XG′ using (1.) above again.
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3. (a) X′XGX′ = X′ and (b) XGX′X = X

X′XGX′X = IX′X, so X′XGX′ = IX′ by Lemma 9.2.2,

proving (a). To prove (b), combine (a) and (1.) above:

X′XG′X′ = X′, now take transposes.

4. XGX′ = XHX′ for any other g-inv H (KEY RESULT!)

By (3.), XGX′X = X = XHX′X. Applying Lemma

9.2.2 gives the result.

5. XGX′ is symmetric

(XGX′)′ = XG′X′. From (1.), G′ is also a g-inv. There-

fore, by (4.), XG′X′ = XGX′.
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9.3. Computing a generalized inverse of X′X.

Let X = (X1,X2), where X1 consists of r linearly independent

columns from X. Then a generalized inverse of X′X is

(X′X)− =

(
(X′

1X1)
−1 0

0 0

)

.

This result is a special case of the following Lemma.
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Lemma 9.3.1: Let the matrix Wp×p have rank r and be parti-

tioned as

W =

(
A B

C D

)

,

where A has full rank r. Then a generalized inverse of W is

W− =

(
A−1 0

0 0

)

.

Proof:

WW−W =

(
A B

C D

)(
A−1 0

0 0

)(
A B

C D

)

=

(
I 0

CA−1 0

)(
A B

C D

)

=

(
A B

C CA−1B

)

This equals W if D = CA−1B. Why does this have to be true?

Since A has rank r (the same rank as W), this means that any

column of

(
B

D

)

can be written as a linear combination of

the columns of

(
A

C

)

. I.E.,

(
B

D

)

=

(
A

C

)

F, for some

matrix F. But then B = AF, so F = A−1B. Since D = CF,

D = CA−1B.
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Also note that for the projection matrix onto R(X), we can

always use

P = X1(X
′
1X1)

−1X′
1.

We know that such a P is a projection ontoR(X1), butR(X1) =

R(X).
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Example: One-way ANOVA with 2 groups











Y11

...

Y1n1

Y21

...

Y2n2












=












1 1 0
... ... ...

1 1 0

1 0 1
... ... ...

1 0 1
















µ

α1

α2



 +












ε11

...

ε1n1

ε21

...

ε2n2












(What is the rank of X? 2)

X′X =





n n1 n2

n1 n1 0

n2 0 n2



 .

Let X1 be the first two columns of X. Then

(X′
1X1)

−1 =

(
n n1

n1 n1

)−1

=
1

nn1 − n2
1

(
n1 −n1

−n1 n

)

=

(
1

n2

−1

n2

−1

n2

1

n1
+ 1

n2

)

and a generalized inverse of X′X is

(X′X)− =





n−1

2
−n−1

2
0

−n−1

2
n−1

1
+ n−1

2
0

0 0 0



 .

What is the solution β̂ to the normal equations that corresponds

to this generalized inverse?
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β̂ =





n−1

2
−n−1

2
0

−n−1

2
n−1

1
+ n−1

2
0

0 0 0










∑

j Y1j +
∑

j Y2j
∑

j Y1j
∑

j Y2j






=





Ȳ2

Ȳ1 − Ȳ2

0





Compute Ŷ as Xβ̂:











1 1 0
... ... ...

1 1 0

1 0 1
... ... ...

1 0 1
















Ȳ2

Ȳ1 − Ȳ2

0



 =












Ȳ1·
...

Ȳ1·

Ȳ2·
...

Ȳ2·











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9.4. Properties of P

Lemma 9.5.1: Let rank(X) = r < p and P = X(X′X)−X′

where (X′X)− is a generalized inverse of X′X. Then

(i) P and I −P are projection matrices.

(ii) rank(I − P) = tr(I − P) = n − r.

(iii) PX = X.

Note that by the Theorem part (4.), all generalized inverses give

the same P.

Proof:

(i) P is symmetric by the Theorem part (5.).

P is idempotent: Let G = (X′X)− so that P = XGX′. Then

P2 = (XGX′)(XGX′) = (XG)(X′XGX′) = XGX′ by the

Theorem part (3a.).

So P is symmetric and idempotent and thus a projection. It

then follows easily that I − P is as well.

(ii) We know rank = trace for projection matrices.

(iii) PX = XGX′X = X by the Theorem part (3b.).
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9.5. METHOD 2: Reduce the model to one of full rank.

Let X1 consist of r linearly independent columns from X and

let X2 consist of the remaining columns. Then X2 = X1F for

some F because the columns of X1 span the column space of

X. Write

X = (X1,X2) = (X1,X1F) = X1(Ir×r,F),

This is a special case of the factorization

X = KL,

where rank(Kn×r) = r and rank(Lr×p) = r. Using this general

notation,

E[Y] = Xβ = KLβ = Kα.

Therefore, we have reparametrized the linear model into one of

full rank.

Because K has full rank, the least squares estimate of α is

α̂ = (K′K)−1K′Y

and

Ŷ = Kα̂ = K(K′K)−1K′Y.

Therefore, P = K(K′K)−1K′. If K = X1, this gives us our

previous expression P = X1(X
′
1X1)

−1X′
1.
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In-Class Exercise: One-way ANOVA with 2 groups – revisited

Let X1 consist of the first 2 columns of X. Apply the method

on the previous page. What is F? What is α? What is α̂?

What is Ŷ?

See the end of this document for the solution.
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9.6. METHOD 3: Impose identifiability constraints

Impose s ≡ p− r linear constraints on β of the form Hs×pβ =

0 to make β uniquely determined (“identifiable”), i.e., β̂ is

unique: for any Ŷ ∈ R(X), there is a unique β̂ satisfying

Xβ̂ = Ŷ and Hβ̂ = 0.

Let’s drop the “hats” for aestetics. We can re-write this as
(

Y

0

)

=

(
X

H

)

β ≡ Gβ.

Under what conditions have we accomplished our goal? When

is there a unique solution to

(
Y

0

)

= Gβ?
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Lemma 9.6.1: A unique solution exists if and only if G has

rank p and the rows of H are linearly independent of the rows

of X.

Proof: A solution β will exist for all Y ∈ R(X) if and only if
(

Y

0

)

∈ R(G),

if and only if, for all u ∈ <n+s,

G′u = 0 =⇒

(
Y

0

)′

u = 0

( since

(
Y

0

)

= GF, (GF)′u = F′G′u = F′0 = 0).

This is equivalent to

(X′,H′)

(
uX

uH

)

= 0 =⇒ (Y′, 0′)

(
uX

uH

)

= 0,

i.e.,

X′uX + H′uH = 0 =⇒ Y′uX = 0, for all Y ∈ R(X)

=⇒ (Xa)′uX = 0, for all a

=⇒ X′uX = 0,

if and only if

X′uX + H′uH = 0 =⇒ X′uX = 0 and H′uH = 0,

This just says that the rows of X are linearly independent of

the rows of H.

The solution will be unique if and only if the columns of G are

linearly independent, i.e., rank(G) = p.
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Corollary: A unique solution exists if and only if G has rank

p and H has rank s = p − r.

To use this method to estimate β, we solve Ŷ = Xβ̂ and

Hβ̂ = 0, i.e., we solve the augmented normal equations:

X′Xβ̂ = X′Y and H′Hβ̂ = 0

These equalities together give:

(X′X + H′H)β̂ = (G′G)β̂ = X′Y,

The solution is given by:

β̂ = (G′G)−1X′Y,

and Ŷ = Xβ̂ = PY, where P = X(G′G)−1X′.
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In Class Exercise: One-way ANOVA with 2 groups – revisited:

Apply Method 3 using the constraint α1 +α2 = 0. To make life

easier, assume n1 = n2 = 1

2
n. What is H? What is β̂? What

is Ŷ?

You “might” find the following result useful:





n n
2

n
2

n
2

n
2

+ 1 1
n
2

1 n
2

+ 1





−1

=





n+4

4n
−

1

4
−

1

4

−
1

4

n+4

4n
n−4

4n

−
1

4

n−4

4n
n+4

4n





See the end of this document for the solution.
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9.6. METHOD 31

2
: Impose identifiability constraints, imple-

mented differently.

Consider the example of one-way ANOVA with, say, 5 groups.

Suppose we use the constraint α1 + α2 + α3 + α4 + α5 = 0. We

can use this constraint to formulate a full-rank model, which

we illustrate by this example. (Thus the method might be con-

sidered “in between” methods 2 and 3.)

Consider one “replication” – five observations from each of the

five groups. The design matrix X will have five columns (not

six), for µ, α1, α2, α3, α4, (but not α5).

X =









1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
1 −1 −1 −1 −1









The row of X for the observation from group 5 is gotten from

using α5 = −α1 − α2 − α3 − α4.
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Solution to Exercise for Method 3

Hβ ≡ (0, 1, 1)





µ

α1

α2



 = 0

G′G =





n n/2 n/2

n/2 n/2 + 1 1

n/2 1 n/2 + 1





(G′G)−1 =





n+4

4n
−1

4

−1

4
−1

4

n+4

4n
n−4

4n
−1

4

n−4

4n
n+4

4n





β̂ = (G′G)−1X′Y =





Ȳ··

1

2
(Ȳ1· − Ȳ2·)

1

2
(Ȳ2· − Ȳ1·)





Clearly β̂ satisfies the constraint α1 + α2 = 0. Again, we have

Ŷ = Xβ̂ =












Ȳ1·

...

Ȳ1·

Ȳ2·

...

Ȳ2·












.
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Solution to Exercise for Method 2

The third column of X is the first column minus the second

column. Therefore, F =

(
1

−1

)

X = (X1,X1F) = X1︸︷︷︸
K

(
1 0 1

0 1 −1

)

︸ ︷︷ ︸
L

E(Y) = Xβ = KLβ = Kα where α = Lβ

α = Lβ =

(
1 0 1

0 1 −1

)




µ

α1

α2



 =

(
µ + α2

α1 − α2

)

.

α̂ = (K′K)−1K′Y

=

(
n n1

n1 n1

)−1( ∑

j Y1j +
∑

j Y2j
∑

j Y1j

)

=

(
n−1

2 −n−1

2

−n−1

2
n−1

1
+ n−1

2

)( ∑

j Y1j +
∑

j Y2j
∑

j Y1j

)

=

(
Ȳ2

Ȳ1 − Ȳ2

)

Ŷ = X1α̂ =












Ȳ1·
...

Ȳ1·

Ȳ2·
...

Ȳ2·












, as before


